We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei

    Harshini Weerasinghe

    Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia

    ,
    Michael Payne

    Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia

    ,
    Sally Beard

    Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia

    &
    Alex Andrianopoulos

    *Author for correspondence:

    E-mail Address: alex.a@unimelb.edu.au

    Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia

    Published Online:https://doi.org/10.2217/fmb.16.9

    Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.

    Papers of special note have been highlighted as: • of interest; •• ofconsiderable interest

    References

    • 1 Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 90(5), 939–949 (1997).
    • 2 Medoff G, Kobayashi GS, Painter A, Travis S. Morphogenesis and pathogenicity of Histoplasma capsulatum. Infect. Immun. 55(6), 1355–1358 (1987).
    • 3 Larkin MA, Blackshields G, Brown NP et al. ClustalW and Clustal X version 2.0. Bioinformatics 23(21), 2947–2948 (2007).
    • 4 Ustianowski AP, Sieu TP, Day JN. Penicillium marneffei infection in HIV. Curr. Opin. Infect. Dis. 21(1), 31–36 (2008).
    • 5 Hu Y, Zhang J, Li X, Yang Y, Zhang Y, Ma J, Xi L. Penicillium marneffei infection: an emerging disease in mainland China. Mycopathologia 175 (1), 57–67 (2013).
    • 6 Tsui WMS, Ma KF, Tsang DNC. Disseminated Penicillium marneffei infection in HIV-infected subject. Histopathology 20(4), 287–293 (1992).
    • 7 Chariyalertsak S, Vanittanakom P, Nelson KE, Sirisanthana T, Vanittanakom N. Rhizomys sumatrensis and Cannomys badius, new natural animal hosts of Penicillium marneffei. Med. Mycol. 34(2), 105–110 (1996).
    • 8 Li X, Yang Y, Zhang X et al. Isolation of Penicillium marneffei from soil and wild rodents in Guangdong, SE China. Mycopathology 172(6), 447–451 (2011).
    • 9 Cao C, Liang L, Wang W et al. Common reservoirs for Penicillium marneffei infection in humans and rodents, China. Emerging Infect. Dis. 17(2), 209–214 (2011).
    • 10 Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N, Hay RJ. Sialic acid-dependent recognition of laminin by Penicillium marneffei conidia. Infect. Immun. 66(12), 6024–6026 (1998).
    • 11 Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Infect. Immun. 67(10), 5200–5205 (1999).
    • 12 Vanittanakom N, Cooper CR, Fisher MC, Sirisanthana T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin. Microbiol. Rev. 19(1), 95–110 (2006).
    • 13 Boyce KJ, Andrianopoulos A. Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. Eukaryot. Cell 12(2), 154–160 (2013).
    • 14 Andrianopoulos A. Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Intl. J. Med. Microbiol. 292(5–6), 331–347 (2002).
    • 15 Borneman AR, Hynes MJ, Andrianopoulos A. The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Mol. Microbiol. 38(5), 1034–1047 (2000).
    • 16 Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A. TupA the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol. Microbiol. 48(1), 85–94 (2003).
    • 17 Cooper CR, Haycocks NG. Penicillium marneffei: an insurgent species among the penicillia. J. Eukaryot. Microbiol. 47(1), 24–28 (2000).
    • 18 Cánovas D, Andrianopoulos A. Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol. Microbiol. 62(6), 1725–1738 (2006).
    • 19 Thirach S, Cooper CR, Vanittanakom N. Molecular analysis of the Penicillium marneffei glyceraldehyde-3-phosphate dehydrogenase-encoding gene (gpdA) and differential expression of gpdA and the isocitratelyase-encoding gene (acuD) upon internalization by murine macrophages. J. Med. Microbiol. 57(11), 1322–1328 (2008).
    • 20 Sun J, Li X, Feng P et al. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei. Med. Mycol. 52(2), myt006–178 (2014).
    • 21 Liu H, Xi L, Zhang J et al. Identifying differentially expressed genes in the dimorphic fungus Penicillium marneffei by suppression subtractive hybridization. FEMS Microbiol. Lett. 270(1), 97–103 (2007).
    • 22 Yaar L, Mevarech M, Koltin Y. A Candida albicans RAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. J. Gen. Microbiol. 143 (Pt 9), 3033–3044 (1997).
    • 23 Hausauer DL, Gerami-Nejad M, Kistler-Anderson C, Gale CA. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot. Cell 4(7), 1273–1286 (2005).
    • 24 Kozminski KG, Beven L, Angerman E, Tong AHY, Boone C, Park H-O. Interaction between a Ras and a Rho GTPasecouples selection of a growth site to the development of cell polarity in yeast. Mol. Biol. Cell. 14(12), 4958–4970 (2003).
    • 25 Boyce KJ, Hynes MJ, Andrianopoulos A. The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J. Bacteriol. 183(11), 3447 (2001).
    • 26 Hwang L. Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol. Biol. Cell. 14(6), 2314–2326 (2003).
    • 27 Felipe MSS. Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast Cells. J. Biol. Chem. 280(26), 24706–24714 (2005).
    • 28 Nunes LR, de Oliveira RC, Leite DB et al. Transcriptome analysis of Paracoccidioidesbrasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot. Cell 4(12), 2115–2128 (2005).
    • 29 Tuch BB, Mitrovich QM, Homann OR et al. The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet. 6(8), e1001070 (2010).
    • 30 Lin X, Ran Y, Gou L et al. Comprehensive transcription analysis of human pathogenic fungus Penicillium marneffei in mycelial and yeast cells. Med. Mycol. 50(8), 835–842 (2012).
    • 31 Pasricha S, Payne M, Cánovas D et al. Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3 3(11), 1997–2014 (2013).•• Microarray-based expression profiling screen that identified genes involved in phase switching as well as cell type maintenance.
    • 32 Yang E, Wang G, Woo PCY et al. Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei. Eukaryot. Cell 12(9), 1214–1224 (2013).
    • 33 Yang E, Chow W-N, Wang G et al. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei. PLoS Genet. 10(10), e1004662 (2014).• RNAseq-based expression profiling screen that genes identified all genes involved in phase switching as well as cell type maintenance.
    • 34 Lau S, Chow WN, Wong A, Yeung J. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Neglected Trop. Dis. 7(8), e2398 (2013).
    • 35 Liu D, Liu X, Tan S. Analysis of the difference in proteome expression between yeast form and mould form of Penicillium marneffei using SELDI technique. J. South Med. Univ. 27(1), 59–61 (2007).
    • 36 Chandler JM, Treece ER, Trenary HR et al. Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei. Proteome Sci. 6(1), 17 (2008).
    • 37 Woo PCY, Tam EWT, Chong KTK et al. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J. 277(18), 3750–3758 (2010).
    • 38 Fisher MC, Hanage WP, de Hoog S et al. Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathog. 1(2), e20 (2005).
    • 39 Zhang P, Xu B, Wang Y et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungus Penicillium marneffei. Mycolog. Res. 112(8), 943–949 (2008).
    • 40 Segretain G. Penicillium marneffei N. sp., agent d'unemycosedu systèmeréticulo-endothélial. Mycopathology 11(4), 327–353 (1959).
    • 41 Bugeja HE, Boyce KJ, Weerasinghe H et al. Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genet. Biol. 49(10), 772–778 (2012).• An advanced suite of molecular genetic tools for manipulation of T. marneffei.
    • 42 Nierman WC, Fedorova-Abrams ND, Andrianopoulos A. Genome sequence of the AIDS-associated pathogen Penicillium marneffei (ATCC18224) and its near taxonomic relative Talaromyces stipitatus (ATCC10500). Genome Announc. 3(1), e01559–14 (2015).•• Genome sequence of the T. marneffei type strain.
    • 43 Xi L, Xu X, Liu W et al. Differentially expressed proteins of pathogenic Penicillium marneffei in yeast and mycelial phases. J. Med. Microbiol. 56(Pt 3), 298–304 (2007).
    • 44 Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature 412(6842), 83–86 (2001).
    • 45 Sazer S. Nuclear envelope: nuclear pore complexity. Curr. Biol. 15(1), R23–R26 (2005).
    • 46 Lau SKP, Tse H, Chan JSY et al. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment. FEBS J. 280(24), 6613–6626 (2013).
    • 47 Peñalver MC, O'Connor JE, Martinez JP, Gil ML. Binding of human fibronectin to Aspergillus fumigatus conidia. Infect. Immun. 64(4), 1146–1153 (1996).
    • 48 Tronchin G, Esnault K, Renier G, Filmon R, Chabasse D, Bouchara JP. Expression and identification of a laminin-binding protein in Aspergillus fumigatus conidia. Infect. Immun. 65(1), 9–15 (1997).
    • 49 Kalo A, Segal E, Sahar E, Dayan D. Interaction of Candida albicans with genital mucosal surfaces: involvement of fibronectin in adherence. J. Infect. Dis. 157(6), 1253–1256 (1988).
    • 50 McMahon JP, Wheat J, Sobel ME, Pasula R, Downing JF, Martin WJ. Murine laminin binds to Histoplasma capsulatum. A possible mechanism of dissemination. J. Clin. Invest. 96(2), 1010–1017 (1995).
    • 51 Kummasook A, Cooper CR, Vanittanakom N. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei. Med. Mycol. 48(8), 1066–1074 (2010).
    • 52 Borneman AR, Hynes MJ, Andrianopoulos A. A basic helix–loop–helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei. Mol. Microbiol. 44(3), 621–631 (2002).
    • 53 Zuber S, Hynes MJ, Andrianopoulos A. The G-protein alpha-subunit GasC plays a major role in germination in the dimorphic fungus Penicillium marneffei. Genetics 164(2), 487–499 (2003).
    • 54 Borneman AR, Hynes MJ, Andrianopoulos A. An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157(3), 1003–1014 (2001).
    • 55 Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl Acad. Sci. USA 101(33), 12248–12253 (2004).
    • 56 Nayak T, Szewczyk E, Oakley CE et al. A versatile and efficient Gene-targeting system for Aspergillus nidulans. Genetics 172(3), 1557–1566 (2006).
    • 57 Wang F, Tao J, Qian Z et al. A histidine kinase PmHHK1 regulates polar growth, sporulation and cell wall composition in the dimorphic fungus Penicillium marneffei. Mycolog. Res. 113(Pt 9), 915–923 (2009).
    • 58 Nemecek JC, Wüthrich M, Klein BS. Global control of dimorphism and virulence in fungi. Science 312(5773), 583–588 (2006).
    • 59 Alex LA, Korch C, Selitrennikoff CP, Simon MI. COS1 a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc. Natl Acad. Sci. USA 95(12), 7069–7073 (1998).
    • 60 Bahn Y-S, Kojima K, Cox GM, Heitman J. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol. Biol. Cell 17(7), 3122–3135 (2006).
    • 61 Boyce KJ, Schreider L, Kirszenblat L, Andrianopoulos A. The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium marneffei. Mol. Microbiol. 82(5), 1164–1184 (2011).
    • 62 Bugeja HE, Hynes MJ, Andrianopoulos A. The RFX protein RfxA Is an essential regulator of growth and morphogenesis in Penicillium marneffei. Eukaryot. Cell 9(4), 578–591 (2010).
    • 63 Cánovas D, Boyce KJ, Andrianopoulos A. The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. Eukaryot. Cell 10(3), 302–312 (2011).
    • 64 Zhao YQ, Tao JH, Chen XX, Zheng AN. RNA Interference in Penicillium marneffei demonstrates a role for cps gene in pigmentation biosynthesis. J. Fudan Univ. (Nat. Sci.) 48(1) 130–134, 141 (2009).
    • 65 Xia Z, Tao J, Ren S. Functional research of the cdpk gene in Penicillium marneffei. J. Fudan Univ. (Nat. Sci.) 3, 280–286 (2010).
    • 66 Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67(8), 3703–3713 (1999).
    • 67 Boyce KJ, Schreider L, Andrianopoulos A. In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. PLoS Pathog. 5(11), e1000678 (2009).•• Functional analysis of a gene required for sensing the host–cell environment and the partitioning of yeast cell morphogenesis from asexual development.
    • 68 Gladfelter AS, Zyla TR, Lew DJ. Genetic interactions among regulators of septin organization. Eukaryot. Cell 3(4), 847–854 (2004).
    • 69 Sisto F, Miluzio A, Leopardi O, Mirra M, Boelaert JR, Taramelli D. Differential cytokine pattern in the spleens and livers of BALB/c mice infected with Penicillium marneffei: protective role of gamma interferon. Infect. Immun. 71(1), 465–473 (2003).
    • 70 Thirach S, Cooper CR, Vanittanakom P, Vanittanakom N. The copper zinc superoxide dismutase gene of Penicillium marneffei: cloning, characterization, and differential expression during phase transition and macrophage infection. Med. Mycol. 45(5), 409–417 (2007).
    • 71 Cooper CR. From bamboo rats to humans: the odyssey of Penicillium marneffei. ASM News 64(7), 390–397 (1998).
    • 72 Duong TA. Infection due to Penicillium marneffei, an emerging pathogen: review of 155 reported cases. Clin. Infect. Dis. 23(1), 125–130 (1996).
    • 73 Kudeken N, Kawakami K, Saito A. CD4+ cell-mediated fatal hyperinflammatory reactions in mice infected with Penicillium marneffei. Clin. Exp. Immunol. 107(3), 468–473 (1997).
    • 74 Kudeken N, Kawakami K, Kusano N, Saito A. Cell-mediated immunity in host resistance against infection caused by Penicillium marneffei. J. Med. Vet. Mycol. 34(6), 371–378 (1996).• Establishment of one of the first mouse models for T. marneffei infection.
    • 75 Knox BP, Deng Q, Rood M, Eickhoff JC, Keller NP, Huttenlocher A. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae. Eukaryot. Cell 13(10), 1266–1277 (2014).
    • 76 Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135(1), 174–188 (2008).•• Systematic screen for genes in C. neoformans that affect proliferation in a mouse model and the identification of a large number of genes that affect this process.
    • 77 Suwunnakorn S, Cooper CR, Kummasook A, Pongpom M, Vanittanakom P, Vanittanakom N. Role of the rttA gene in morphogenesis, stress response, and virulence in the human pathogenic fungus Penicillium marneffei. Med. Mycol. 53, 119–131 (2015).
    • 78 Szabo R. Cla4 protein kinase is essential for filament formation and invasive growth of Yarrowia lipolytica. Mol. Genet. Genomics 265(1), 172–179 (2001).
    • 79 Lamson RE, Winters MJ, Pryciak PM. Cdc42 regulation of kinase activity and signaling by the yeast p21-activated kinase Ste20. Mol. Cell. Biol. 22(9), 2939–2951 (2002).
    • 80 Benton BK, Tinkelenberg A, Gonzalez I, Cross FR. Cla4p a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis. Mol. Cell. Biol. 17(9), 5067–5076 (1997).
    • 81 Pongpom P, Cooper CR Jr, Vanittanakom N. Isolation and characterization of a catalase-peroxidase gene from the pathogenic fungus, Penicillium marneffei. Med. Mycol. 43(5), 403–411 (2005).
    • 82 Martchenko M, Alarco A-M, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15(2), 456–467 (2004).
    • 83 Cox GM, Harrison TS, McDade HC et al. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71(1), 173–180 (2003).
    • 84 Tavares AH, Silva SS, Bernardes VV et al. Virulence insights from the Paracoccidioides brasiliensis transcriptome. Genet. Mol. Res. 4(2), 372–389 (2005).
    • 85 Shibuya K, Paris S, Ando T, Nakayama H, Hatori T, Latgé J-P. Catalases of Aspergillus fumigatus and inflammation in aspergillosis. Nihon Ishinkin Gakkai Zasshi 47(4), 249–255 (2006).
    • 86 Epstein FH, Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329(27), 2002–2012 (1993).
    • 87 Chesrown SE, Monnier J, Visner G, Nick HS. Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-γ, TGF-β, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochem. Biophys. Res. Commun. 200(1), 126–134 (1994).
    • 88 Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 167(6), 1358–1363 (1993).
    • 89 Peter M, Neiman AM, Park HO, van Lohuizen M, Herskowitz I. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15(24), 7046–7059 (1996).
    • 90 Schoedon G, Schneemann M, Hofer S, Guerrero L, Blau N, Schaffner A. Regulation of the L-arginine-dependent and tetrahydrobiopterin-dependent biosynthesis of nitric oxide in murine macrophages. Eur. J. Biochem. 213(2), 833–839 (1993).
    • 91 Cui J, Tanaka R, Taguchi H et al. Histopathological and electron microscopical studies on experimental Penicillium marneffei infection in mice. J. Med. Vet. Mycol. 35(5), 347–353 (1997).
    • 92 Nakamura K, Miyazato A, Koguchi Y et al. Toll-like receptor 2 (TLR2) and dectin-1 contribute to the production of IL-12p40 by bone marrow-derived dendritic cells infected with Penicillium marneffei. Microbes Infect. 10(10), 1223–1227 (2008).
    • 93 Ejzykowicz DE, Solis NV, Gravelat FN et al. Role of Aspergillus fumigatus DvrA in host cell interactions and virulence. Eukaryot. Cell 9(10), 1432–1440 (2010).
    • 94 De Sousa M, Fachet J. The cellular basis of the mechanism of action of cortisone acetate on contact sensitivity to oxazolone in the mouse. Clin. Exp. Immunol. 10(4), 673–684 (1972).
    • 95 Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 42(7), 590–598 (2010).•• Systematic screen for genes in C. albicans that affect infectivity in a mouse model and the demonstration that these do not necessarily affect morphological switching and growth in vitro.
    • 96 Huang X, Li D, Xi L, Mylonakis E. Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei. PLoS ONE 9(9), e108764 (2014).
    • 97 Chao CC, Hsu PC, Jen CF et al. Zebrafish as a model host for Candida albicans infection. Infect. Immun. 78(6), 2512–2521 (2010).
    • 98 Tenor JL, Oehlers SH, Yang JL, Tobin DM, Perfect JR. Live imaging of host-parasite interactions in a zebrafish infection model reveals cryptococcal determinants of virulence and central nervous system invasion. mBio 6(5), e01425–e015 (2015).
    • 99 Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4), e49–e56 (2011).
    • 100 Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot. Cell 8(11), 1750–1758 (2009).
    • 101 Alarco A-M, Marcil A, Chen J, Suter B, Thomas D, Whiteway M. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J. Immunol. 172(9), 5622–5628 (2004).
    • 102 Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol. Med. Microbiol. 27(2), 163–169 (2000).
    • 103 Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
    • 104 Meeker ND, Trede NS. Immunology and zebrafish: spawning new models of human disease. Dev. Comp. Immunol. 32(7), 745–757 (2008).