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AbstrAct West Nile virus (WNV), an emerging mosquito-borne and zoonotic flavivirus, 
continues to spread worldwide and represents a major problem for human and veterinary 
medicine. In recent years, severe outbreaks were observed in the USA and Europe with 
neighboring countries, and the virus is considered to be endemic in an increasing number 
of areas. Although most infections remain asymptomatic, WNV can cause severe, even fatal, 
neurological disease, which affects mostly the elderly and immunocompromised individuals. 
Several vaccines have been licensed in the veterinary sector, but no human vaccine is 
available today. This review summarizes recent strategies that are being followed to develop 
WNV vaccines with emphasis on technologies suitable for the use in humans.
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west Nile virus
First described in 1937 in the West Nile district in Uganda, West Nile virus (WNV) is today one 
of the most widely spread arthropod-transmitted pathogens. WNV belongs to the Flaviviridae 
family, which also includes the human pathogens yellow fever virus, tick-borne encephalitis virus, 
Japanese encephalitis virus (JEV) and dengue virus [1]. Within the flaviviruses, WNV is grouped 
into the JEV serocomplex, being highly similar to JEV, Usutu and St Louis encephalitis viruses. 
WNV infects birds and is transmitted by a large range of different mosquito species. The presence 
of suitable insect vectors in almost all parts of the world enables the virus to efficiently invade novel 
territories. Besides birds, only few animal species (alligators and some frog species) are known to 
function as hosts that can re-infect mosquitoes. Nevertheless, the insect vectors can transmit WNV 
to a variety of other animals, including mammals, although these represent dead-end hosts for the 
virus. In humans, most infections remain asymptomatic and approximately 20% of the cases result 
in mild disease associated with flu-like symptoms. In approximately 1% of the infected individuals, 
however, severe symptoms occur ranging from high fever to neurological disease including flaccid 
paralysis, meningitis and encephalitis. Aged or immunocompromised individuals are at highest 
risk for developing these severe forms of West Nile disease, which may even be fatal in up to 10% 
of the severe cases [2,3].

Only sporadic outbreaks of WNV among humans or horses were observed between the 1940s 
and 1980s in Africa, Asia and some Mediterranean countries of Europe. By contrast, in the 1990s, 
the virus started to appear more frequently, and, in 1999, the first cases were observed in the 
USA [4]. In the following years, WNV rapidly spread over entire North America and has reached 
several Latin and South American countries. Total case numbers of severe infections in the USA 
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until today exceed 37,000, including more than 
1500 deaths. In addition, the WNV epidemic 
was accompanied by massive mortality in birds 
and horses [5].

Over the last 6 years, outbreaks are also 
increasing in number in Europe. WNV cases 
among humans are now seen yearly in some 
areas of Italy, Hungary, Greece, Russia and 
several other southern and eastern European 
countries. Hence, the virus is considered to be 
endemic in many areas of Europe.

Several genetic lineages of WNV exist, and 
most circulating strains can be attributed to the 
two major lineages 1 and 2, which are approxi-
mately 94% identical on the amino acid level 
[6]. Until very recently, lineage 1 viruses were 
associated with severe outbreaks among humans 
and horses, whereas lineage 2 was considered to 
be much less pathogenic. However, the situa-
tion has changed in recent years. Following the 
identification of more virulent lineage 2 strains 
in South Africa [7], major outbreaks among 
humans in countries such as Greece or Russia 
have been caused by WNV from lineage 2 [8,9]. 
Even co-circulation of lineage 1 and 2 strains 
has been demonstrated [10,11]. The mechanisms 
underlying this diversification and the spread 
of WNV within Europe still need to be fully 
elucidated.

WNV is an enveloped virus with a ssRNA 
genome of approximately 11 kb in positive ori-
entation. The viral genome encodes for seven 
nonstructural proteins and the three structural 
proteins C (capsid protein), prM (membrane 
protein) and E (envelope protein). The capsid, 
containing the RNA, is made of multiple cop-
ies of the C protein. The prM and E proteins 
reside in the lipid envelope of WNV. In the 
mature virus, the pr precursor peptide is split 
from the M protein, which has important roles 
in stabilizing the correct conformation of E. 
The E protein fulfils critical functions in the 
viral life cycle, such as receptor binding and the 
escape from vesicles after the endocytosis into 
the host cell [12]. Consequently, it is the major 
target for protective immune responses (see 
below). The nonstructural proteins of WNV 
remain intracellular and mediate the RNA rep-
lication and virus assembly, only nonstructural 
protein 1 (NS1) is associated with the surface 
of infected cells and is also secreted [13,14]. 
Antibodies against NS1 are able to protect mice 
from WNV infection [15]. In addition to roles 
in virus structure and assembly, several WNV 

proteins also interfere with specific pathways 
of the innate immune response of the host and 
thereby help the virus to successfully establish 
an infection [16–18].

vaccine-mediated protection from wNv
Vaccines to protect humans against a number 
of flaviviruses such as tick-borne encephalitis 
virus, JEV or YF, are available, hence the prin-
ciples underlying these vaccines are obvious 
candidates for developing vaccines for WNV. 
This is especially the case for JEV, which is the 
only flavivirus within the JEV serocomplex that 
is targeted by commercially available vaccines 
for humans, and immunization is performed 
using inactivated, attenuated or recombinant 
chimeric viruses [19,20]. However, with WNV 
aged and immunocompromised individuals 
are at highest risk for severe infections and, 
therefore, the major target groups for vaccines. 
Hence, not all technologies of existing human 
flavivirus or veterinary WNV vaccines are suit-
able for the development into a human WNV 
vaccine.

WNV only sporadically caused outbreaks 
before the 1990s, and therefore the virus was 
previously not in focus of intense vaccine 
research efforts. However, after the introduc-
tion of WNV into the USA in 1999, the pre-
vention of virus infection became an important 
topic in both academic research and industry. 
Due to the observed high mortality among 
WNV-infected horses, the development of a 
formaldehyde-inactivated whole-virus vaccine 
for veterinary use was initiated, and this vaccine 
was successively licensed in 2003 [21]. In addi-
tion, a canarypox virus-based vaccine express-
ing the prM and E proteins of WNV became 
available in 2004 [22]. Immunization of horses 
led to a marked decrease of severe WNV dis-
ease in the following years [23], demonstrating 
the effectiveness of these vaccines. In addition, 
they were also used to protect other animal 
species, especially birds [24]. Nevertheless, all 
veterinary WNV vaccines require an annual 
booster immunization in order to remain pro-
tective. Hence, there is clearly need for WNV 
vaccine technologies delivering a longer-lasting 
immunity, especially for the use in humans as 
no human vaccine exists to date.

Although the exact levels of immunity cor-
relating to protection from WNV disease have 
not been defined yet, the development and 
testing of different immunization strategies 
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have already yielded valuable insight into the 
immune mechanisms underlying vaccine-
mediated protection. Both the innate and the 
adaptive immune system are active against the 
virus and perturbation of either of them can 
lead to high susceptibility towards an infection. 
The immune response against a WNV infection 
has been studied primarily in different rodent 
models and has been reviewed in detail else-
where [25–28].

Based on a substantial amount of data, it 
is currently well accepted that the humoral 
immune response is a key player in vaccine-
mediated protection: B-cell-deficient mice can 
be protected from WNV disease by the pas-
sive transfer of antibodies from WNV-immune 
animals and the level of neutralizing antibodies 
correlates with protection [29,30]. In addition, 
potent neutralizing antibodies have been identi-
fied and evaluated in human clinical trials [31,32]. 
An investigation of the immunological mem-
ory response to WNV revealed that antibodies 
derived from either vaccine-induced memory 
B cells or long-lived plasma cells are protective. 
However, protective antibodies against a heter-
ologous WNV strain are mostly produced by 
memory B cells, which is especially relevant for 
crossprotection against the different circulating 
WNV lineages [33].

WNV infection in mice antibodies of the 
IgG2 isotypes have shown to have enhanced 
effector functions, due to increased complement 
binding to their Fc regions, and this function 
of WNV-specific IgG2 helps to reduce the total 
amount of antibodies needed for neutralization 
of WNV and thereby enhances antibody-medi-
ated protection against WNV in mice [34]. In 
contrast to antibodies, CD8+ T-cell responses 
seem to play a more supportive role in vaccine-
mediated protection, especially after repeated 
rounds of immunization [35].

Most animals and humans infected with 
WNV generate a robust antibody response 
against the E protein [36,37]. This protein rep-
resents the major target for protective WNV 
antibodies, although protective and neutraliz-
ing antibodies have also been described against 
the NS1 and M proteins, respectively [15,38]. 
Consequently, almost all current approaches 
for WNV subunit vaccines represent methods 
to deliver the E protein. Within E, the domain 
DIII, which is involved in receptor binding, 
harbors important epitopes for effective neu-
tralization of the virus [39–41]. Immunization 

with only recombinant domain DIII was suf-
ficient to protect animals from WNV [42,43]. 
However, in humans, the humoral immune 
response to a WNV infection is skewed towards 
non-neutralizing epitopes in other parts of the 
E protein, mainly clustering in or near the 
fusion loop [41,44]. Whether mutant forms of the 
E protein, which lack the immune-dominant 
non-neutralizing epitopes at the fusion loop 
[45], would have a stronger protective effect in 
humans remains to be tested.

The availability of several suitable animal 
models, the possibility to grow WNV well in cell 
culture, the use of reverse genetics and the focus 
on the E protein as the major protective anti-
gen have led to a variety of different approaches 
for WNV vaccination. These include the latest 
developments in subunit immunization such as 
vector- or DNA-based technologies.

vaccines containing complete wNv 
particles
Several formaldehyde-inactivated whole-virus 
vaccines are available for veterinary use. They 
are based on different WNV strains and are 
widely used to immunize horses. As formalde-
hyde treatment negatively affects the antigenic 
structures of the pathogen [46,47], alternative 
inactivation procedures are under develop-
ment, in particular when addressing the use 
in humans. Amanna et al. [48] established an 
inactivation method based on the incubation of 
the low-pathogenic Kunjin strain of WNV with 
hydrogen peroxide, which leads to the forma-
tion of oxygen radicals. This technology mainly 
destroys the viral RNA genome but causes much 
less damage to protein antigens. A WNV vac-
cine produced by this method completely pro-
tected mice against infection with WNV and 
elicited higher levels of anti-WNV antibodies 
as compared with a commercial, formaldehyde-
inactivated one. In addition, the protective 
antibody levels remained high for more than 
280 days [48].

The yellow fever vaccine based on the 17D 
strain represents an example for the attenua-
tion of a flavivirus, and its successful use as a 
vaccine, but only few vaccine approaches rely-
ing on a classically attenuated WNV have been 
described [49]. By contrast, attenuation of the 
virus by using reverse genetics (i.e., inserting 
mutations at defined positions in the genome) 
is seen as a promising alternative that could 
provide clear benefits regarding safety issues. 
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Several mutations in the coding sequences for 
the capsid protein lead to the production of 
defective viruses that are still immunogenic 
enough to induce protection [50]. Given the 
target population for WNV vaccines, technolo-
gies relying on classical attenuation or single 
point mutations need to be carefully checked for 
safety issues that might arise through reversion 
of mutations.

By deleting the sequence for the capsid and 
supplying this information in a helper cell line, 
Widman et al. [51] generated virus particles that 
were immunogenic but lacked the capacity to 
successfully replicate in the infected cell. The 
vaccine generated by this technology, called 
RepliVAX, proved to be protective in several 
animal models including nonhuman primates.

In another strategy by Whiteman et al. [52], 
WNV viruses (derived from strain New York 
1999 [NY99]) with mutations in the glyco-
sylation sites for the E and NS1 proteins were 
produced as potential vaccine candidates. Mice 
infected with these mutant viruses showed no 
viremia in the blood but had high titers of neu-
tralizing antibodies [52]. Furthermore, the mice 
were protected against lethal challenge with the 
wild-type NY99 strain.

Recombinant protein vaccines
WNV protein subunit vaccine candidates 
intended for human use have been evaluated 
preclinically (both in rodents and nonhuman 
primates) and in Phase I clinical trials. In most 
approaches, different forms of the ectodomain 
of the E protein have been evaluated as vac-
cine antigens, including the isolated domain 
DIII. The C-terminal transmembrane region 
of E is usually excluded from these antigens, 
as it causes difficulties in the expression of the 
protein. In addition, as subunit vaccine anti-
gens lack inherent immune-stimulatory prop-
erties such as Toll-like receptor (TLR) ligands 
or pathogen-associated molecular patterns, the 
E protein vaccine candidates have for the most 
part been formulated with various adjuvants to 
ensure that a broad and effective humoral and 
cellular immune response is elicited.

Wang et al. [53] expressed the E ectodomain 
(amino acid residues 1–406) as a recombi-
nant thioredoxin fusion protein in Escherichia 
coli and formulated the recombinant pro-
tein with Freund’s complete adjuvant (FCA) 
before immunizing mice. The vaccine proved 
to be protective in a WNV challenge model 

and human serum antibodies from previ-
ously WNV-infected individuals recognized 
the recombinant E protein used. However, a 
rather high antigen dose (20 μg per mouse and 
immunization) was required even though the 
protein was adjuvanted with the potent adju-
vant FCA, which, however, is not allowed for 
human use [53].

The WNV E ectodomain has also been 
expressed in insect cell systems – that is, 
Drosophila S2 cells and in Spodoptera frugiperda 
expresSF+ cells via baculovirus infection [54–
56]. These proteins have been comprehensively 
evaluated as WNV vaccine antigens [56–58]. 
Ledizet et al. [54] and Bonafé et al. [56] describe 
studies with an insect cell-derived antigen 
(rWNV-E

T
), formulated with either Alum or 

FCA, which was evaluated in mice, hamsters 
and horses. Both formulations were protective 
against lethal WNV challenge in mice and 
hamster models. When horses already vacci-
nated with a commercially available inactivated 
horse WNV vaccine, named Equip WNV, were 
boosted with Alum-adjuvanted rWNV-E

T
 they 

produced higher titers of WNV-neutralizing 
antibodies compared with horses boosted with 
the inactivated vaccine [56]. In these studies, 
only total IgG was measured, the quality of 
the antigen-specific T-cell response was not 
investigated and is thus unknown. In a similar 
approach, a recombinant E ectodomain protein 
(E80) and a recombinant version of the NS1 
protein were produced in the Drosophila S2 
expression system [55]. Both proteins were evalu-
ated in mice and hamsters as a combination or 
as single protein vaccines formulated with the 
saponin-based adjuvant ISCOMATRIX® (CSL 
Ltd, Melbourne, Australia) [55,57] with antigen 
doses ranging from 0.3 to 10 μg. Vaccination 
with the E80 alone, NS1 alone or E80 plus 
NS1 led to high neutralizing antibody titers 
and good antigen-specific cellular responses in 
mice, as measured by antigen-specific prolifera-
tion and cytokine production [55]. The antibody 
response was biased towards IgG1 as the IgG2a 
titers were lower than the IgG1 titer in all vac-
cine groups. Moreover, in a hamster WNV 
challenge model with a mortality rate of 50%, 
vaccination with the E80 protein, adjuvanted 
with ISCOMATRIX, led to 100% protection 
whereas vaccination with NS1 protein was only 
partially protective [57]. The rodent study was 
followed by a WNV efficacy study of rhesus 
macaques vaccinated with 5 μg E80 adjuvanted 
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with GPI-0100, an adjuvant comprised of semi-
synthetic quillaja saponins [58]. All vaccinated 
monkeys developed WNV-neutralizing anti-
bodies and were protected from WNV infec-
tion as no viremia was detected in the blood 
10 days after the infection. In 2009, a Phase I 
clinical trial was performed in healthy adults 
using the E80 vaccine antigen adjuvanted with 
Alhydrogel® (Invivogen, Toulouse, France) [59].

More recently, another E. coli-expressed 
WNV E protein was extensively evaluated pre-
clinically as a possible human WNV vaccine 
[60]. The protein was produced by expressing 
the E protein ectodomain (amino acid residues 
1–404) of the NY99 strain in E. coli, and purify-
ing it after oxidative refolding [41]. To ensure an 
effective immune response with both humoral 
and cellular immunity the protein was formu-
lated with the particulate Quillaja saponaria 
saponin-based adjuvant Matrix-M™ (Novavax 
AB, Uppsala, Sweden). Adjuvant Matrix-M can 
induce a broad immune response, comprising 
Th1 and Th2 responses, compared with using 
antigen alone or antigen mixed with other adju-
vants [61,62]. The adjuvant has been evaluated 
in several Phase I clinical trials with very good 
safety data [63]. The E protein as a WNV vac-
cine antigen was evaluated using different anti-
gen doses (0.5–10 μg/mouse) formulated with 
different adjuvant concentrations [60]. This vac-
cine composition induced higher antigen-spe-
cific IgG1 and IgG2a titers, as well as neutraliz-
ing WNV antibodies, when compared with the 
same antigen formulated with the Th2-prone 
adjuvant Alum. Additionally, the E protein-
specific cellular immune response was increased 
in comparison with the Alum-adjuvanted anti-
gen: vaccinated mice had significantly higher 
levels of Th1 and Th2 cytokines from ex vivo 
antigen-stimulated splenocytes. Moreover, the 
addition of Matrix-M made it possible to reduce 
the antigen dose six-times while maintaining 
comparable humoral responses. Two separate 
WNV challenges, one using a homologous 
WNV strain (lineage 1, strain ITA-09) to 
the vaccine antigen and another using a het-
erologous WNV lineage 2 (strain AUT-08), 
revealed that mice were completely protected 
from WNV disease after vaccination with one 
or two doses of the vaccine.

As mentioned earlier, the DIII part of the 
E protein has also been evaluated preclini-
cally in mice. In the paper by Chu et al. [64], 
immunization with WNV DIII, expressed 

in E. coli, gave rise to both IgG1 and IgG2a 
anti-DIII antibodies and a strong Th1 cellu-
lar response. These antibodies protected young 
mice from cerebral WNV infection. The 
immune response induced by WNV DIII was 
further enhanced using CpG DNA as an adju-
vant. However, to induce the reported immune 
responses, the vaccine was intraperitoneally 
injected at a very high antigen dose (100 μg 
recombinant DIII) at three time points with 
1 week intervals, which makes it hard or practi-
cally impossible to translate into future human 
use. This observation corresponds to a detailed 
analysis by Zlatkovic et al. [65], who demon-
strated that DIII alone was much less effec-
tive in inducing WNV-neutralizing antibodies 
than the E ectodomain or inactivated complete 
virions. The recombinant protein probably 
exposes domains that are cryptic in the virion 
and, thereby, focuses the antibody response 
away from key neutralizing determinants [65]. 
In another approach, the DIII domain was 
expressed in E. coli as a recombinant protein 
fused to a modified version of the bacterial pro-
tein flagellin (STF2Δ) [66]. This confers the 
DIII domain with an inherent adjuvant effect 
as flagellin binds to TLR5, which is expressed 
by important innate immune cells such as neu-
trophils, monocytes and dendritic cells. When 
tested in mice, this fusion protein gave rise to 
WNV neutralizing antibodies and protected 
mice against a WNV challenge. When the 
fusion protein was injected in TLR5-deficient 
mice the DIII-specific antibody titers dropped 
drastically, which implies that the TLR5 acti-
vation of the innate immune system, and also 
the probably enhanced uptake of DIII by 
phagocytes, was necessary for protection.

DNA vaccines
As an alternative approach to using recombi-
nant proteins or whole viruses as vaccines, the 
antigens can be delivered in form of their DNA 
sequences. This technology has the advantage 
that the antigens are made by the cells of the 
vaccinated individual itself, engaging both the 
MHC class 1 and class 2 pathways of antigen 
presentation and thereby mimicking a viral 
infection. As the nucleic acid sequences can 
easily be changed, this technology is especially 
suitable for the rapid adaptation of a vaccine 
towards newly emerging variants of the patho-
gen. Although immunization with nucleic acids 
is the topic of several clinical trials in humans, 
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all licensed DNA vaccines so far are in the vet-
erinary sector, including one for WNV. This 
particular vaccine co-expresses the prM and the 
E proteins, which in cell culture leads to the for-
mation of subviral particles that closely resemble 
the complete WNV virion [67]. This strategy to 
combine the expression of E protein with the 
expression of prM is also used in other vaccine 
technologies (see below). Although protective 
effects were shown in mice, horses and birds, the 
vaccine was not made available [24,68]. A similar 
DNA plasmid has also been tested in humans in 
a Phase I clinical trial, demonstrating its poten-
tial to elicit WNV-neutralizing antibodies [69,70]. 
Other recent experimental DNA vaccines that 
showed protection in the mouse model used 
the ectodomain of the E protein either fused 
to a secretory signal sequence or to parts of the 
complement protein C3d [71,72]. A more com-
plex system that yields single-round infectious 
WNV particles similar to the before mentioned 
RepliVAX technology was constructed by 
Chang et al. [73]. A single DNA plasmid gener-
ates two different RNAs, which allow the for-
mation of structurally intact WNV particles. 
As these virions do not contain functional RNA 
for the capsid protein, new viral particles cannot 
be assembled in the cell after a single round of 
infection.

The major general drawback of DNA vac-
cination is its relatively low immunogenicity 
likely due to the inefficient delivery of the 
plasmids into the cell nucleus [74]. As a conse-
quence, in animals larger than mice, high (i.e., 
mg) quantities of DNA need to be applied in 
order to elicit a significant immune response. 
Therefore, despite its clearly demonstrated 
qualities in immune stimulation, safety and 
stability, DNA vaccination still awaits an effi-
cient delivery technique. The gold standard 
technology today is in vivo electroporation, 
which transfers DNA into the cell by applying 
short electric pulses to the site of injection [75]. 
However, this technology is still very sophis-
ticated (with a complex apparatus required) 
and quite painful, which makes its use in mass 
vaccination scenarios still unlikely. Alternative 
strategies focus on the development of nano-
particles that carry the DNA plasmid across 
the cellular and nuclear membranes or on 
the delivery via micro-needles [76]. Recently, 
mannosylated polyethylenimine was used to 
complex a WNV DNA vaccine plasmid into 
nanoparticles that were then administered to 

mice either intramuscularly or directly onto the 
skin [77]. With the mannose moiety the result-
ing DNA nanocomplexes are able to bind to the 
mannose receptor that is present on antigen-
presenting cells, and this may also lead to the 
activation of complement-dependent phagocy-
tosis. This technology was previously shown 
to be effective in stimulating strong cellular 
immune responses in humans in the context 
of HIV vaccination, possibly via uptake by and 
activation of dendritic cells in the skin [78]. By 
using a heterologous prime-boost strategy con-
sisting of a single intramuscular DNA and a 
single adjuvanted recombinant protein injec-
tion, de Filette et al. [77] showed that 1 μg of 
DNA was sufficient to efficiently prime protec-
tive anti-WNV immune responses. The ability 
of DNA to prime immune cells for the contact 
with other vaccine antigens such as recombi-
nant proteins is being used more frequently 
in vaccinology [79] and has delivered powerful 
immunization strategies against WNV [71,80]. 
Other approaches that have been tested for 
the delivery of WNV DNA vaccines include 
nanopatches that target the plasmid directly 
to antigen presenting cells in the epidermis [81].

vector-based vaccines
Insertion of the WNV E protein with or with-
out the prM protein into a variety of viral vector 
systems has generated several promising vaccine 
candidates. The 17D yellow fever vaccine strain 
is the basis of the ChimeriVax™ (SanofiPasteur, 
Lyon, France) technology. Here, the prM/E 
gene of YF is replaced by the corresponding 
sequences of WNV. The resulting chimeric 
flavivirus is attenuated but remains immuno-
genic enough to elicit neutralizing antibodies 
[82]. A ChimeriVax-JEV vaccine was licensed 
for use in humans and it is one of the most 
advanced WNV vaccine candidates, having 
passed Phase II clinical trials [20,83]. A similar 
vaccine for horses was commercialized but later 
recalled due to allergic reactions of immunized 
horses against an excipient in the formulation 
[84]. Another chimeric flavivirus for WNV vac-
cination is generated by using an attenuated 
dengue virus as backbone and swapping the 
prM/E genes as above [85]. Results in animal 
models and clinical Phase I testing of this vac-
cine show the induction of robust protective 
immune responses. Other vector-based sys-
tems that were successfully used to immunize 
animals against WNV include measles virus, 
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vesicular stomatitis virus, influenza A virus, 
lentiviruses, adenovirus and the commercially 
available veterinary WNV vaccine based on the 
canarypox virus [22,86–90].

Towards a human vaccine
A human WNV vaccine has to address a couple 
of specific issues, which make its development 
more complex than expected on basis of the 
promising results obtained with many of the 
technologies described above.

The human population groups at high-
est risk for developing WNV disease are the 
elderly or immunocompromised individu-
als [2,91]. This complicates the use of vaccine 
candidates that consist of, for example, live-
attenuated viruses or live viral vector systems, 
as these might cause severe risks in the context 
of an impaired immune system. Inactivated 
vaccines, recombinant proteins or DNA are 
clearly advantageous as vaccine antigens in this 
context. On the other hand, it is well estab-
lished that protective immunity is harder to 
achieve in the context of immunosenescence 
[92]. As a consequence, such vaccines need to 
be especially immunogenic, which would then 
favor modified live virus technologies or the 
use of potent adjuvants with repeated rounds 
of immunization. The age of the immunized 
individual has only been addressed by very 
few of the WNV vaccine studies described so 
far, mostly very young animals are being used. 
Ledgerwood et al. [70] found that a DNA vac-
cine was equally immunogenic in people below 
or above the age of 50 years. Pinto et al. [93] used 
aged mice to compare the hydrogen peroxide 
inactivated whole-virus vaccine with a commer-
cially available formaldehyde-inactivated WNV 
vaccine. Although the antibody titers elicited 
with both vaccines were very similar, full pro-
tection was only observed with the commercial 
one. Potential caveats of such comparisons are 
the different amounts of virus particles in the 
product and their degree of purification plus 
the adjuvants used in the different vaccines 
[93]. Nevertheless, these studies demonstrate 
the importance of including aged animals in 
WNV vaccine research in order to specifically 
address protection in the context of immunose-
nescence. In addition, it will be a critical issue 
to establish WNV antibody titers that correlate 
with the protection of humans from disease, 
and to integrate these results into the different 
animal models.

WNV vaccine development is also challenged 
by the variability of circulating virus strains. 
This is of special importance in Europe where, in 
contrast to the Americas, WNV strains belong-
ing to different genetic lineages are co-circulat-
ing, sometimes even in the same area [94]. Almost 
all candidate vaccines have so far been devel-
oped based on lineage 1 sequences (such as the 
NY99 strain), and the question arises whether 
they also mediate protection against the recently 
isolated lineage 2 isolates. However, the issue 
of crossprotection has been addressed in some 
recent studies, and the results demonstrate that 
the lineage 1 based vaccines tested indeed show 
broad crossprotection against lineage 2 viruses 
[60,95,96]. This is in accordance to studies with 
JEV vaccines, which are based on genotype III 
but elicit antibodies that crossneutralize other 
genotypes [97]. Hence, the genetic diversity of 
WNV does not seem to be that problematic for 
vaccine development at the moment. On the 
other hand, the differences of WNV lineages 
should always be kept in mind, since the situ-
ation might be different with future emerging 
strains.

Another factor complicating the development 
of a human WNV vaccine is the relatively low 
incidence of infections combined with the dif-
ficulty in clinically testing of the protective 
efficacy. WNV outbreaks are occurring spo-
radically and in an unpredictably way. As an 
example, the focus of the 2012 epidemic in the 
USA was in Texas with the highest case numbers 
since 2003. However, in 2013, the incidence 
was much lower and highest case numbers were 
counted in California [98]. It is, therefore, dif-
ficult to allocate complex and expensive clinical 
trials to a defined geographical area. As already 
pointed out by others [28,82,99], these problems 
need to be discussed jointly by regulatory 
authorities and the vaccine industry.

Conclusion & future perspective
Many obstacles in the development of an effica-
cious vaccine against WNV were overcome in 
the last decade. Research efforts have not only 
delivered the available veterinary vaccines but 
also technologies that elicit strong protective 
immune responses in a variety of animal models 
and humans. To develop the first human WNV 
vaccine, these technologies need to be trans-
formed into powerful and safe immunogens that 
can be used in the population groups which are 
mostly affected by WNV. In addition, solutions 
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executive summAry
west Nile virus

 ●  West Nile virus (WNV) is an emerging mosquito-borne virus which infects birds but can be transmitted to mammals 
including humans and horses.

 ●  Infections remain asymptomatic or cause mild symptoms in 80% of the cases.

 ●  Severe neurological disease, such as meningitis or encephalitis, can occur, and older or immunocompromised 
individual are at highest risk.

 ●  WNV is increasing its distribution in Europe, its neighboring areas and the Americas.

vaccine-mediated protection from wNv

 ●  There is no human vaccine available.

 ●  Several veterinary vaccines exist.

 ●  Vaccine-mediated protection from WNV is mostly antibody mediated.

 ●  Key neutralizing epitopes are situated in the E (envelope) protein of WNV.

vaccines containing complete wNv particles

 ●  Inactivated vaccines are used to protect horses.

 ●  Novel inactivation procedures yield vaccines with better preserved antigens.

Recombinant protein vaccines

 ●  Major target of recombinant protein vaccines is the E protein, either as entire ectodomain or as part of subviral 
particles; also the nonstructural protein 1 is target of protective antibodies.

 ●  The use of different adjuvants has strong effects on immunogenicity and protective capacity of recombinant antigens.

 ●  Strategies to express the E protein in bacteria or insect cells have yielded candidate vaccines in late preclinical and 
early clinical phases of development.

DNA vaccines

 ●  A DNA vaccine coding for the prM and E proteins of WNV was licensed for veterinary use and tested in a clinical Phase I 
trial in humans.

 ●  Several techniques are in preclinical development to successfully deliver DNA vaccines, including microneedles or 
nanoparticles.

vector-based vaccines

 ●  A chimeric yellow fever vaccine virus expressing the prM and E protein of WNV has been developed up to a Phase II 
clinical trial in humans.

 ●  Several other vector systems, mainly also chimeric for the WNV prM/E proteins, have been established.

Towards a human vaccine

 ●  Several candidate vaccines for the use in humans have been developed which show effective immunogenicity and 
display excellent preclinical and clinical safety profiles.

 ●  Levels of neutralizing antibodies that correlate to protection need to be established.

 ●  Clinical development of human WNV vaccines has to take into account issues such as immunosenescence of the 
at-risk population, low incidence and sporadic occurrence of outbreaks and requires the involvement of both vaccine 
industry and health authorities.

have to be found for problems due to market size 
and clinical efficacy testing. It is not in the line of 
expectation that WNV will lose its threat in near 

future. On the contrary, the virus is continuing 
its spread throughout the world and novel genetic 
variants are arising [9,100]. Therefore, having a 
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human vaccine available is critical for the pre-
paredness to protect the population against this 
emerging infectious disease.
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