We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Adenovirus degradation of cellular proteins

    ,
    Peter Wimmer

    Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany

    &
    Thomas Dobner

    Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany

    Published Online:https://doi.org/10.2217/fmb.11.153

    Eukaryotic cells orchestrate constant synthesis and degradation of intracellular components, including soluble proteins and organelles. The two major intracellular degradation pathways are the ubiquitin/proteasome system and autophagy. Whereas ubiquitin/proteasome system is involved in rapid degradation of proteins, autophagy selectively removes protein aggregates and damaged organelles. Failure of these highly adjusted proteolytic systems to maintain basal turnover leads to altered cellular homeostasis. During evolution, certain viruses have developed mechanisms to exploit their functions to facilitate their own replication, prevent viral clearance and promote the outcome of infection. In this article, we summarize the current opinion on adenoviruses (Ad) and molecular host cell targets, extending on recent evidences for protein degradation pathways in infected cells. We describe recently identified connections between Ad-mediated proteolysis and viral replication with main emphasis on the function of certain Ad proteins.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Horwitz MS. Adenoviruses. In: Virology. Fields BN, Knipe DM, Howley PM. Lippincott-Raven, NY, USA, 2149–2171 (1996).
    • Benkö M, Harrach B, Russel WC. Adenoviridae. In: Virus Taxonomy. Seventh Report of the International Comittee on Taxonomy of Viruses. Van Regenmortel MHV, Fauquet CM, Bishop DHL. Academic Press, San Diego, CA, USA, 227–238 (1999).
    • Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses. J. Gen. Virol.84(Pt 11),2895–2908 (2003).
    • Bailey A, Mautner V. Phylogenetic relationships among adenovirus serotypes. Virology205(2),438–452 (1994).
    • Wadell G. Molecular epidemiology of human adenoviruses. Curr. Top. Microbiol. Immunol.110,191–220 (1984).
    • Woo JL, Berk AJ. Adenovirus ubiquitin-protein ligase stimulates viral late mRNA nuclear export. J. Virol.81,575–587 (2007).
    • Shenk T. Adenoviridae: the viruses and their replication. In: Virology. Knipe DM, Howley PM. Lippincott-Raven, NY, USA, 2265–2300 (2001).
    • Kosulin K, Haberler C, Hainfellner JA, Amann G, Lang S, Lion T. Investigation of adenovirus occurrence in pediatric tumor entities. J. Virol.81(14),7629–7635 (2007).
    • Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B. Lytic and transforming functions of individual products of the adenovirus E1A gene. J. Virol.57(3),765–775 (1986).
    • 10  Schaeper U, Subramanian T, Lim L, Boyd JM, Chinnadurai G. Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J. Biol. Chem.273(15),8549–8552 (1998).
    • 11  Avvakumov N, Sahbegovic M, Zhang Z, Shuen M, Mymryk JS. Analysis of DNA binding by the adenovirus type 5 E1A oncoprotein. J. Gen. Virol.83,517–524 (2002).
    • 12  Avvakumov N, Wheeler R, D’halluin JC, Mymryk JS. Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. J. Virol.76(16),7968–7975 (2002).
    • 13  Täuber B, Dobner T. Adenovirus early E4 genes in viral oncogenesis. Oncogene20,7847–7854 (2001).
    • 14  Täuber B, Dobner T. Molecular regulation and biological function of adenovirus early genes: the E4 ORFs. Gene278,1–23 (2001).
    • 15  Blanchette P, Kindsmuller K, Groitl P et al. Control of mRNA export by adenovirus E4orf6 and E1B55K proteins during productive infection requires E4orf6 ubiquitin ligase activity. J. Virol.82(6),2642–2651 (2008).
    • 16  Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr. Top. Microbiol. Immunol.272,287–330 (2003).
    • 17  Dobner T, Kzhyshkowska J. Nuclear export of adenovirus RNA. Curr. Top. Microbiol. Immunol.259,25–54 (2001).
    • 18  Hershko A, Ciechanover A. The ubiquitin system. Annu. Rev. Biochem.67,425–479 (1998).
    • 19  Nagy V, Dikic I. Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity. Biol. Chem.391(2–3),163–169 (2010).
    • 20  Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell. Biol.5(9),739–751 (2004).
    • 21  Feldman RM, Correll CC, Kaplan KB, Deshaies RJ. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell91(2),221–230 (1997).
    • 22  Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell91(2),209–219 (1997).
    • 23  Petroski MD, Deshaies RJ. Function and regulation of Cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell. Biol.6(1),9–20 (2005).
    • 24  Petroski MD, Deshaies RJ. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the Cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell123(6),1107–1120 (2005).
    • 25  Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat. Rev. Cancer8(6),438–449 (2008).
    • 26  Mahrour N, Redwine WB, Florens L et al. Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. J. Biol. Chem.283(12),8005–8013 (2008).
    • 27  Pause A, Aso T, Linehan WM, Conaway JW, Conaway RC, Klausner RD. Interaction of von Hippel-Lindau tumor suppressor gene product with Elongin. Methods Enzymol.274,436–441 (1996).
    • 28  Lonergan KM, Iliopoulos O, Ohh M et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing Elongins B/C and Cul2. Mol. Cell Biol.18(2),732–741 (1998).
    • 29  Iwai K, Yamanaka K, Kamura T et al. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA96(22),12436–12441 (1999).
    • 30  Kamura T, Sato S, Haque D et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev.12(24),3872–3881 (1998).
    • 31  Blanchette P, Branton PE. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology384(2),317–323 (2009).
    • 32  Frisch SM, Mymryk JS. Adenovirus-5 e1a: paradox and paradigm. Nat. Rev. Mol. Cell. Biol.3(6),441–452 (2002).
    • 33  Berk AJ. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene24(52),7673–7685 (2005).
    • 34  Pelka P, Ablack JN, Fonseca GJ, Yousef AF, Mymryk JS. Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J. Virol.82(15),7252–7263 (2008).
    • 35  Blackford AN, Grand RJ. Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J. Virol.83(9),4000–4012 (2009).
    • 36  Harada JN, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J. Virol.76(18),9194–9206 (2002).▪▪ First evidence of adenoviruses (Ads) exploiting the cellular ubiquitin system.
    • 37  Blanchette P, Cheng CY, Yan Q et al. Both BC-box motifs of adenovirus protein E4orf6 are required to assemble an E3 ligase complex that degrades p53. Mol. Cell. Biol.24,9619–9629 (2004).▪▪ Identification and validation of functional BC-boxes in the E4orf6 protein.
    • 38  Querido E, Blanchette P, Yan Q et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev.15(23),3104–3117 (2001).▪▪ Mechansim of the Ad E1B-55K/E4orf6 E3 ligase complex assembly.
    • 39  Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J. Virol.81(13),7034–7040 (2007).▪▪ Evidence of cellular DNA ligase IV protein degradation by Ad E1B-55K/E4orf6 E3 ligase complex.
    • 40  Stracker TH, Carson CT, Weitzman MD. Adenovirus oncoproteins inactivate the Mre11 Rad50 NBS1 DNA repair complex. Nature418(6895),348–352 (2002).▪▪ Evidence of cellular MRN (Mre11, Rad50 and Nbs1) DNA repair complex inhibition by Ad E1B-55K/E4orf6 E3 ligase complex.
    • 41  Orazio NI, Naeger CM, Karlseder J, Weitzman MD. The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J. Virol.85(4),1887–1892 (2011).▪ Evidence of cellular BLM protein degradation by Ad E1B-55K/E4orf6 E3 ligase complex.
    • 42  Dallaire F, Blanchette P, Groitl P, Dobner T, Branton PE. Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J. Virol.83(11),5329–5338 (2009).▪ First evidence of cellular surface protein degradation by Ad E1B-55K/E4orf6 E3 ligase complex.
    • 43  Blackford AN, Patel RN, Forrester NA et al. Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. Proc. Natl Acad. Sci. USA107(27),12251–12256 (2010).▪▪ Identification and validation of E1B-55K-independent/E4orf6-dependent Ad E3 ligase activity.
    • 44  Schreiner S, Wimmer P, Sirma H et al. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J. Virol.84(14),7029–7038 (2010).▪▪ Identification and validation of E1B-55K-dependent/E4orf6-independent Ad E3 ligase activity.
    • 45  Cheng CY, Gilson T, Dallaire F, Ketner G, Branton PE, Blanchette P. The E4orf6/E1B55K E3 ubiquitin ligase complexes of human adenoviruses exhibit heterogenity in composition and substrate specificity. J. Virol.85(2),765–775 (2011).▪▪ Evidence of serotype-specific Ad E3 ligase complexes assembling either Cullin 2 or Cullin 5.
    • 46  Forrester NA, Sedgwick GG, Thomas A et al. Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. J. Virol.85(5),2201–2211 (2010).
    • 47  Lethbridge KJ, Scott GE, Leppard KN. Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J. Gen. Virol.84,259–268 (2003).
    • 48  Lowe SW, Ruley HE. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev.7(4),535–545 (1993).
    • 49  Yew PR, Liu X, Berk AJ. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev.8(2),190–202 (1994).
    • 50  Farmer G, Bargonetti H, Zhu H, Friedman P, Prywes R, Prives C. Wild-type p53 activates transcription in vitro. Nature358,83–86 (1992).
    • 51  Liu Y, Colosimo Al, Yang Xj, Liao D. Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol. Cell. Biol.20(15),5540–5553 (2000).
    • 52  Martin ME, Berk AJ. Adenovirus E1B 55K represses p53 activation in vitro. J. Virol.72(4),3146–3154 (1998).
    • 53  Martin ME, Berk AJ. Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol. Cell. Biol.19(5),3403–3414 (1999).
    • 54  Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T. The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc. Natl Acad. Sci. USA94,1206–1211 (1997).
    • 55  Kao CC, Yew PR, Berk AJ. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology179(2),806–814 (1990).
    • 56  Sarnow P, Sullivan CA, Levine AJ. A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology120(2),510–517 (1982).
    • 57  Endter C, Hartl B, Spruss T, Hauber J, Dobner T. Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene24,55–64 (2005).
    • 58  Endter C, Kzhyshkowska J, Stauber R, Dobner T. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc. Natl Acad. Sci. USA98,11312–11317 (2001).
    • 59  Dobner T, Horikoshi N, Rubenwolf S, Shenk T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science272(5267),1470–1473 (1996).
    • 60  Koch P, Gatfield J, Lober C et al. Efficient replication of adenovirus despite the overexpression of active and nondegradable p53. Cancer Res.61(15),5941–5947 (2001).
    • 61  Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL. The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene16,349–357 (1998).▪ Mechanism by which the tumor suppressor protein p53 is degraded owing to Ad infection.
    • 62  Wimmer P, Schreiner S, Dobner T. Human pathogens and the host cell SUMOylation system. J. Virol.86(2),642–654 (2012).
    • 63  Pennella MA, Liu Y, Woo JL, Kim CA, Berk AJ. Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J. Virol.84(23),12210–12225 (2010).
    • 64  Ishov AM, Maul GG. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J. Cell. Biol.134(4),815–826 (1996).
    • 65  Ishov AM, Stenberg RM, Maul GG. Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J. Cell Biol.138(1),5–16 (1997).
    • 66  Maul GG. Nuclear domain 10, the site of DNA virus transcription and replication. BioEssays20(8),660–667 (1998).
    • 67  Carvalho T, Seeler JS, Ohman K et al. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J. Cell Biol.131(1),45–56 (1995).
    • 68  Ishov AM, Maul GG. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J. Cell. Biol.134(4),815–826 (1996).
    • 69  Maul GG, Ishov AM, Everett RD. Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology217(1),67–75 (1996).
    • 70  Maul GG, Guldner HH, Spivack JG. Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J. Gen. Virol.74(Pt 12),2679–2690 (1993).
    • 71  Doucas V, Ishov AM, Romo A et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev.10(2),196–207 (1996).
    • 72  Puvion-Dutilleul F, Venturini L, Guillemin MC, de Thé H, Puvion E. Sequestration of PML and Sp100 proteins in an intranuclear viral structure during herpes simplex virus type 1 infection. Exp. Cell. Res.221(2),448–461 (1995).
    • 73  Yang X, Khosravi-Far R, Chang HY, Baltimore D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell89(7),1067–1076 (1997).
    • 74  Michaelson JS, Leder P. RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J. Cell Sci.116(Pt 2),345–352 (2003).
    • 75  Zhao LY, Colosimo AL, Liu Y, Wan Y, Liao D. Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J. Virol.77(21),11809–11821 (2003).
    • 76  Sieber T, Dobner T. Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J. Virol.81(1),95–105 (2007).
    • 77  Schreiner S, Wimmer P, Groitl P et al. Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor daxx is required for efficient transformation of primary rodent cells. J. Virol.85(17),8752–8765 (2011).
    • 78  Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell102(5),549–552 (2000).
    • 79  D’Amours D, Jackson SP. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell. Biol.3(5),317–327 (2002).
    • 80  Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem. Cell. Biol.85(4),509–520 (2007).
    • 81  Stracker TH, Theunissen JW, Morales M, Petrini JH. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst.)3(8–9),845–854 (2004).
    • 82  Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene26(56),7749–7758 (2007).
    • 83  Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J.22(24),6610–6620 (2003).
    • 84  Boyer TG, Berk AJ. Functional interaction of adenovirus E1A with holo-TFIID. Genes Dev.7(9),1810–1823 (1993).
    • 85  Weiden MD, Ginsberg HS. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc. Natl Acad. Sci. USA91(1),153–157 (1994).
    • 86  Schwartz RA, Lakdawala SS, Eshleman HD, Russell MR, Carson CT, Weitzman MD. Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J. Virol.82(18),9043–9055 (2008).
    • 87  Weitzman MD. Functions of the adenovirus E4 proteins and their impact on viral vectors. Front Biosci.10,1106–1117 (2005).
    • 88  Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD. Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J. Virol.79(17),11382–11391 (2005).
    • 89  Evans JD, Hearing P. Distinct roles of the adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J. Virol.77(9),5295–5304 (2003).
    • 90  Evans JD, Hearing P. Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J. Virol.79(10),6207–6215 (2005).
    • 91  Stracker TH, Lee DV, Carson CT, Araujo FD, Ornelles DA, Weitzman MD. Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J. Virol.79(11),6664–5573 (2005).
    • 92  Featherstone C, Jackson SP. DNA double-strand break repair. Curr. Biol.9(20),R759–R761 (1999).
    • 93  Buck D, Malivert L, De Chasseval R et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell124(2),287–299 (2006).
    • 94  Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell124(2),301–313 (2006).
    • 95  Critchlow SE, Bowater RP, Jackson SP. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol.7(8),588–598 (1997).
    • 96  Jeggo PA, Taccioli GE, Jackson SP. Menage a trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays17(11),949–957 (1995).
    • 97  Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature461(7267),1071–1078 (2009).
    • 98  Mimitou EP, Symington LS. Nucleases and helicases take center stage in homologous recombination. Trends Biochem. Sci.34(5),264–272 (2009).
    • 99  Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett.584(17),3682–3695 (2010).
    • 100  Gravel S, Chapman JR, Magill C, Jackson SP. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev.22(20),2767–2772 (2008).
    • 101  Neff NF, Ellis NA, Ye TZ et al. The DNA helicase activity of BLM is necessary for the correction of the genomic instability of bloom syndrome cells. Mol. Biol. Cell.10(3),665–676 (1999).
    • 102  Bohr VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci.33(12),609–620 (2008).
    • 103  Saka Y, Fantes P, Sutani T, Mcinerny C, Creanor J, Yanagida M. Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control. EMBO J.13(22),5319–5329 (1994).
    • 104  Saka Y, Esashi F, Matsusaka T, Mochida S, Yanagida M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev.11(24),3387–3400 (1997).
    • 105  Yamane K, Wu X, Chen J. A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol. Cell. Biol.22(2),555–566 (2002).
    • 106  Bergelson JM, Cunningham JA, Droguett G et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science275,1320–1323 (1997).
    • 107  Nemerow GR, Cheresh DA, Wickham TJ. Adenovirus entry into host cells: a role for alpha(v) integrins. Trends Cell Biol.4(2),52–55 (1994).
    • 108  Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell73(2),309–319 (1993).
    • 109  Caswell PT, Norman JC. Integrin trafficking and the control of cell migration. Traffic7(1),14–21 (2006).
    • 110  Ramsay AG, Marshall JF, Hart IR. Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev.26(3–4),567–578 (2007).
    • 111  Pellinen T, Ivaska J. Integrin traffic. J. Cell Sci.119(Pt 18),3723–3731 (2006).
    • 112  Salone B, Martina Y, Piersanti S et al. Integrin alpha3beta1 is an alternative cellular receptor for adenovirus serotype 5. J. Virol.77(24),13448–13454 (2003).
    • 113  Kreidberg JA. Functions of alpha3beta1 integrin. Curr. Opin. Cell. Biol.12(5),548–553 (2000).
    • 114  Tsuji T. Physiological and pathological roles of alpha3beta1 integrin. J. Membr. Biol.200(3),115–132 (2004).
    • 115  Dipersio CM, Shah S, Hynes RO. Alpha 3A beta 1 integrin localizes to focal contacts in response to diverse extracellular matrix proteins. J. Cell Sci.108(Pt 6),2321–2336 (1995).
    • 116  Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem. Pharmacol.76(11),1352–1364 (2008).
    • 117  Matsushita T, Elliger S, Elliger C et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Therapy5(7),938–945 (1998).
    • 118  Myers MW, Laughlin CA, Jay FT, Carter BJ. Adenovirus helper function for growth of adeno-associated virus: effect of temperature-sensitive mutations in adenovirus early gene region 2. J. Virol.35(1),65–75 (1980).
    • 119  Handa H, Carter BJ. Adeno-associated virus DNA replication complexes in herpes simplex virus or adenovirus-infected cells. J. Biol. Chem.254(14),6603–6610 (1979).
    • 120  Yalkinoglu AO, Heilbronn R, Burkle A, Schlehofer JR, Zur Hausen H. DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res.48(11),3123–3129 (1988).
    • 121  Yakobson B, Hrynko TA, Peak MJ, Winocour E. Replication of adeno-associated virus in cells irradiated with UV light at 254 nm. J. Virol.63(3),1023–1030 (1989).
    • 122  Berns KI, Giraud C. Biology of adeno-associated virus. Curr. Top. Microbiol. Immunol.218,1–23 (1996).
    • 123  Nayak R, Farris KD, Pintel DJ. E4Orf6-E1B-55k-dependent degradation of de novo-generated adeno-associated virus type 5 Rep52 and capsid proteins employs a Cullin 5-containing E3 ligase complex. J. Virol.82(7),3803–3808 (2008).
    • 124  Nayak R, Pintel DJ. Positive and negative effects of adenovirus type 5 helper functions on adeno-associated virus type 5 (AAV5) protein accumulation govern AAV5 virus production. J. Virol.81(5),2205–2212 (2007).
    • 125  Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J. Virol.81(23),12936–12945 (2007).
    • 126  Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol.70(5),3227–3234 (1996).
    • 127  Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol.2(3),211–216 (2001).
    • 128  Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol.9(10),1102–1109 (2007).
    • 129  Jackson WT, Giddings TH Jr, Taylor MP et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol.3(5),e156 (2005).
    • 130  Wileman T. Aggresomes and autophagy generate sites for virus replication. Science312(5775),875–878 (2006).
    • 131  Jiang H, White EJ, Rios-Vicil CI, Xu J, Gomez-Manzano C, Fueyo J. Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J. Virol.85(10),4720–4729 (2011).
    • 132  Ito H, Aoki H, Kuhnel F et al. Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J. Natl Cancer Inst.98(9),625–636 (2006).
    • 133  Jiang H, Gomez-Manzano C, Aoki H et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J. Natl Cancer Inst.99(18),1410–1414 (2007).
    • 134  Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
    • 135  Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell136(4),586–591 (2009).
    • 136  Bohnsack Mt, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10(2),185–191 (2004).
    • 137  Yi R, Qin Y, Macara IG, Cullen BR. Exportin 5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17(24),3011–3016 (2003).
    • 138  Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science303(5654),95–98 (2004).
    • 139  Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science309(5740),1519–1524 (2005).
    • 140  Bennasser Y, Chable-Bessia C, Triboulet R et al. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nat. Struct. Mol. Biol.18(3),323–327 (2011).
    • 141  Mathews MB, Shenk T. Adenovirus virus-associated RNA and translation control. J. Virol.65(11),5657–5662 (1991).
    • 142  Endter C, Dobner T. Cell transformation by human adenoviruses. Curr. Top. Microbiol. Immunol.273,163–214 (2004).
    • 143  Cathomen T, Weitzman MD. A functional complex of the adenovirus proteins E1B-55kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J. Virol.74,11407–11412 (2000).
    • 144  Querido E, Morisson MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE. Identification of three functions of the adenovirus E4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J. Virol.75(2),699–709 (2001).
    • 145  Shen Y, Kitzes G, Nye JA, Fattaey A, Hermiston T. Analyses of single-amino-acid substitution mutants of adenovirus type 5 E1B-55K protein. J. Virol.75(9),4297–4307 (2001).
    • 146  Härtl B, Zeller T, Blanchette P, Kremmer E, Dobner T. Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription. Oncogene27(26),3673–3684 (2008).
    • 147  Babiss LE, Ginsberg HS, Darnell JJ. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol. Cell. Biol.5(10),2552–2558 (1985).
    • 148  Ishov AM, Vladimirova OV, Maul GG. Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J. Cell Sci.117(Pt 17),3807–3820 (2004).
    • 149  Xue Y, Gibbons R, Yan Z et al. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc. Natl Acad. Sci. USA100(19),10635–10640 (2003).
    • 150  Komatsu T, Haruki H, Nagata K. Cellular and viral chromatin proteins are positive factors in the regulation of adenovirus gene expression. Nucleic Acids Res.39(3),889–901 (2011).
    • 151  Lukashchuk V, Everett RD. Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J. Virol.84(8),4026–4040 (2010).
    • 152  Brestovitsky A, Sharf R, Mittelman K, Kleinberger T. The adenovirus E4orf4 protein targets PP2A to the ACF chromatin-remodeling factor and induces cell death through regulation of SNF2h-containing complexes. Nucleic Acids Res.39(15),6414–6427 (2011).
    • 153  Jayaram S, Gilson T, Ehrlich ES, Yu XF, Ketner G, Hanakahi L. E1B 55k-independent dissociation of the DNA ligase IV/XRCC4 complex by E4 34k during adenovirus infection. Virology382(2),163–170 (2008).
    • 154  Cheng CY, Blanchette P, Branton PE. The adenovirus E4orf6 E3 ubiquitin ligase complex assembles in a novel fashion. Virology364(1),36–44 (2007).
    • 155  Duan DR, Pause A, Burgess WH et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science269(5229),1402–1406 (1995).
    • 156  Kibel A, Iliopoulos O, Decaprio JA, Kaelin WG Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science269(5229),1444–1446 (1995).
    • 157  Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of Cullins Cdc53 and Cul2. Genes Dev.13(22),2928–2933 (1999).