We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Butyrate affects bacterial virulence: a new perspective on preventing enteric bacterial pathogen invasion

    Xiucheng Liu

    Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China

    Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China

    ,
    Hao Tang

    Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China

    ,
    Xinxiang Huang

    Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China

    &
    Min Xu

    *Author for correspondence:

    E-mail Address: peterxu1974@163.com

    Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China

    Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

    Published Online:https://doi.org/10.2217/fmb-2023-0148

    Enteric bacterial pathogens are a major threat to intestinal health. With the widespread use of antibiotics, bacterial resistance has become a problem, and there is an urgent need for a new treatment to reduce dependence on antibiotics. Butyrate can control enteric bacterial pathogens by regulating the expression of their virulence genes, promoting the posttranslational modification of their proteins, maintaining an anaerobic environment, regulating the host immune system and strengthening the intestinal mucosal barrier. Here, this review describes the mechanisms by which butyrate regulates the pathogenicity of enteric bacterial pathogens from various perspectives and discusses the prospects and limitations of butyrate as a new option for the control of pathogenic bacteria.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Teklemariam AD, Al-Hindi RR, Albiheyri RS et al. Human salmonellosis: a continuous global threat in the farm-to-fork food safety continuum. Foods 12(9), 1756 (2023).
    • 2. Buliva E, Elnossery S, Okwarah P et al. Cholera prevention, control strategies, challenges and World Health Organization initiatives in the Eastern Mediterranean Region: a narrative review. Heliyon 9(5), e15598 (2023).
    • 3. Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol. 88(1), 26–40 (2020). • Antimicrobial resistance in bacteria, caused by the overuse of antibiotics, has become a global problem. It is therefore important to develop new strategies to prevent bacterial infections.
    • 4. Mazhar M, Zhu Y, Qin L. The interplay of dietary fibers and intestinal microbiota affects type 2 diabetes by generating short-chain fatty acids. Foods 12(5), 1023 (2023).
    • 5. Dong Y, Zhang K, Wei J et al. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front. Immunol. 14, 1158200 (2023).
    • 6. Li Y, Zhang Y, Wei K et al. Review: effect of gut microbiota and its metabolite SCFAs on radiation-induced intestinal injury. Front. Cell. Infect. Microbiol. 11, 577236 (2021).
    • 7. Zhan Z, Tang H, Zhang Y et al. Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front. Microbiol. 13, 976406 (2022).
    • 8. Tang H, Zhan Z, Zhang Y, Huang X. Propionylation of lysine, a new mechanism of short-chain fatty acids affecting bacterial virulence. Am. J. Transl. Res. 14(8), 5773–5784 (2022).
    • 9. Fang Y, Li X. Protein lysine four-carbon acylations in health and disease. J. Cell Physiol. doi: 10.1002/jcp.30981 (2023) (Epub ahead of print).
    • 10. Xiang T, Zhao S, Wu Y et al. Novel post-translational modifications in the kidneys for human health and diseases. Life Sci. 311(Pt B), 121188 (2022).
    • 11. Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010).
    • 12. Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science 362(6418), eaat9076 (2018).
    • 13. Golpour F, Abbasi-Alaei M, Babaei F et al. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed. Pharmacother. 163, 114763 (2023).
    • 14. Parada Venegas D, De La Fuente MK, Landskron G et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).
    • 15. Cronin P, Joyce SA, O'Toole PW, O'Connor EM. Dietary fibre modulates the gut microbiota. Nutrients 13(5), 1655 (2021). • Dietary fiber in the intestine is fermented by the intestinal flora to produce short-chain fatty acids, and a reasonable concentration of short-chain fatty acids in the intestine benefits the intestinal health.
    • 16. Ríos-Covián D, Ruas-Madiedo P, Margolles A et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).
    • 17. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3), 189–200 (2016).
    • 18. Singh V, Lee G, Son H et al. Butyrate producers, ‘the sentinel of gut’: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 13, 1103836 (2022).
    • 19. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5(2), e00889 (2014).
    • 20. Fu X, Liu Z, Zhu C et al. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr. 59(Suppl. 1), S130–S152 (2019).
    • 21. Stilling RM, Van De Wouw M, Clarke G et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 99, 110–132 (2016).
    • 22. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19(1), 29–41 (2017).
    • 23. Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2(6), e00130-17 (2017).
    • 24. Zhang L, Liu C, Jiang Q, Yin Y. Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol. Metab. 32(3), 159–169 (2021).
    • 25. Louis P, Duncan SH, Mccrae SI et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol. 186(7), 2099–2106 (2004).
    • 26. Vital M, Penton CR, Wang Q et al. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 1(1), 8 (2013).
    • 27. Clausen MR, Mortensen PB. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37(5), 684–689 (1995).
    • 28. Nie K, Ma K, Luo W et al. Roseburia intestinalis: a beneficial gut organism from the discoveries in genus and species. Front. Cell Infect. Microbiol. 11, 757718 (2021).
    • 29. Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum – friend or foe? J. Inorg. Biochem. 224, 111586 (2021).
    • 30. Bronner DN, Faber F, Olsan EE et al. Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease. Cell Host Microbe 23(2), 266–273.e4 (2018).
    • 31. Rishi P, Pathak S, Ricke SC. Short chain fatty acids influence virulence properties of Salmonella enterica serovar typhimurium. J. Environ. Sci. Health B 40(4), 645–657 (2005).
    • 32. Durant JA, Lowry VK, Nisbet DJ et al. Short-chain fatty acids affect cell-association and invasion of HEp-2 cells by Salmonella typhimurium. J. Environ. Sci. Health B 34(6), 1083–1099 (1999).
    • 33. Gantois I, Ducatelle R, Pasmans F et al. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72(1), 946–949 (2006).
    • 34. Boyen F, Haesebrouck F, Vanparys A et al. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol. 132(3–4), 319–327 (2008).
    • 35. Van Immerseel F, De Buck J, De Smet I et al. Interactions of butyric acid- and acetic acid-treated Salmonella with chicken primary cecal epithelial cells in vitro. Avian Dis. 48(2), 384–391 (2004).
    • 36. Papezova K, Gregorova D, Jonuschies J, Rychlik I. Ordered expression of virulence genes in Salmonella enterica serovar Typhimurium. Folia Microbiol (Praha) 52(2), 107–114 (2007).
    • 37. Liu J, Zhu W, Qin N et al. Propionate and butyrate inhibit biofilm formation of Salmonella Typhimurium grown in laboratory media and food models. Foods 11(21), 3493 (2022). •• Butyrate inhibits arcZ expression and thus affects biofilm formation by Salmonella typhimurium.
    • 38. Goodman KN, Powers MJ, Crofts AA et al. Campylobacter jejuni BumSR directs a response to butyrate via sensor phosphatase activity to impact transcription and colonization. Proc. Natl Acad. Sci. USA 117(21), 11715–11726 (2020).
    • 39. Sun Y, Wilkinson BJ, Standiford TJ et al. Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. J. Bacteriol. 194(19), 5274–5284 (2012).
    • 40. Pace F, Rudolph SE, Chen Y et al. The short-chain fatty acids propionate and butyrate augment adherent-invasive Escherichia coli virulence but repress inflammation in a human intestinal enteroid model of infection. Microbiol. Spectr. 9(2), e0136921 (2021). • Butyrate upregulates the flagellar and pilus assembly genes of adherent-invasive Escherichia coli to improve bacterial adhesion and invasion.
    • 41. Nakanishi N, Tashiro K, Kuhara S et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology (Reading) 155(Pt 2), 521–530 (2009).
    • 42. Tobe T, Nakanishi N, Sugimoto N. Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect. Immun. 79(3), 1016–1024 (2011).
    • 43. Takao M, Yen H, Tobe T. LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli. Mol. Microbiol. 93(6), 1302–1313 (2014).
    • 44. Dillon SC, Espinosa E, Hokamp K et al. LeuO is a global regulator of gene expression in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 85(6), 1072–1089 (2012).
    • 45. Baek C-H, Wang S, Roland KL, Curtiss R. Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J. Bacteriol. 191(4), 1278–1292 (2009).
    • 46. Qin R, Sang Y, Ren J et al. The bacterial two-hybrid system uncovers the involvement of acetylation in regulating of Lrp activity in Salmonella Typhimurium. Front. Microbiol. 7, 1864 (2016).
    • 47. Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 44(45), 7342–7372 (2005).
    • 48. Minguez P, Parca L, Diella F et al. Deciphering a global network of functionally associated post-translational modifications. Mol. Syst. Biol. 8, 599 (2012).
    • 49. Ren J, Sang Y, Lu J, Yao Y-F. Protein acetylation and its role in bacterial virulence. Trends Microbiol. 25(9), 768–779 (2017).
    • 50. Liu M, Guo L, Fu Y et al. Bacterial protein acetylation and its role in cellular physiology and metabolic regulation. Biotechnol. Adv. 53, 107842 (2021).
    • 51. Hentchel KL, Escalante-Semerena JC. Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 79(3), 321–346 (2015).
    • 52. Chen Y, Sprung R, Tang Y et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteomics 6(5), 812–819 (2007).
    • 53. Sang Y, Ren J, Qin R et al. Acetylation regulating protein stability and DNA-binding ability of HilD, thus modulating Salmonella Typhimurium virulence. J. Infect. Dis. 216(8), 1018–1026 (2017). •• Modification by acylation changes the stability and DNA-binding ability of HilD protein, the key virulence regulator of Salmonella Typhimurium, thereby affecting its virulence.
    • 54. Zhang ZJ, Pedicord VA, Peng T, Hang HC. Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat. Chem. Biol. 16(1), 95–103 (2020). •• Site-specific butyrylation of the transcriptional regulator HilA of Salmonella pathogenicity island 1 inhibits bacterial pathogenesis.
    • 55. Xu J-Y, Xu Z, Liu X et al. Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum. Mol. Cell Proteomics 17(6), 1156–1169 (2018).
    • 56. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 8, 1162 (2017).
    • 57. Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 105, 93–101 (2017).
    • 58. Kelly CJ, Zheng L, Campbell EL et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5), 662–671 (2015).
    • 59. Nagpal R, Tsuji H, Takahashi T et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: a quantitative bird's-eye view. Front. Microbiol. 8, 1388 (2017).
    • 60. Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279(1), 90–105 (2017).
    • 61. Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352(6285), 535–538 (2016).
    • 62. Garner CD, Antonopoulos DA, Wagner B et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect. Immun. 77(7), 2691–2702 (2009).
    • 63. Rivera-Chávez F, Zhang LF, Faber F et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19(4), 443–454 (2016).
    • 64. Galán JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat. Rev. Microbiol. 19(11), 716–725 (2021).
    • 65. Stecher B, Robbiani R, Walker AW et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5(10), 2177–2189 (2007).
    • 66. Mirzaei R, Dehkhodaie E, Bouzari B et al. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 145, 112352 (2022).
    • 67. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16(8), 461–478 (2019).
    • 68. Liu H, Wang J, He T et al. Butyrate: a double-edged sword for health? Adv Nutr 9(1), 21–29 (2018).
    • 69. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14(10), 667–685 (2014).
    • 70. Gupta A, Bansal M, Liyanage R et al. Sodium butyrate modulates chicken macrophage proteins essential for Salmonella enteritidis invasion. PLoS ONE 16(4), e0250296 (2021). •• Butyrate upregulates the production of vimentin protein in chicken macrophage cells, which is involved in the clearance of intestinal pathogens.
    • 71. Tsugawa H, Kabe Y, Kanai A et al. Short-chain fatty acids bind to apoptosis-associated speck-like protein to activate inflammasome complex to prevent Salmonella infection. PLoS Biol. 18(9), e3000813 (2020).
    • 72. Song C, Chai Z, Chen S et al. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp. Mol. Med. 55(4), 681–691 (2023).
    • 73. Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol. 16(8), 457–470 (2018).
    • 74. Zhao Y, Chen F, Wu W et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 11(3), 752–762 (2018).
    • 75. Fang J, Wang H, Zhou Y et al. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp. Mol. Med. 53(5), 772–787 (2021).
    • 76. Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: epithelial permeability, mucus and bacterial translocation. Biomed. Pharmacother. 162, 114644 (2023).
    • 77. Sylvester PA, Myerscough N, Warren BF et al. Differential expression of the chromosome 11 mucin genes in colorectal cancer. J. Pathol. 195(3), 327–335 (2001).
    • 78. Gratchev A, Böhm C, Riede E et al. Regulation of mucin MUC2 gene expression during colon carcinogenesis. Ann. NY Acad. Sci. 859, 180–183 (1998).
    • 79. Gaudier E, Jarry A, Blottière HM et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 287(6), G1168–G1174 (2004).
    • 80. Burger-Van Paassen N, Vincent A, Puiman PJ et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420(2), 211–219 (2009).
    • 81. Wrzosek L, Miquel S, Noordine M-L et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11, 61 (2013).
    • 82. Wang H-B, Wang P-Y, Wang X et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57(12), 3126–3135 (2012).