We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Isovanillic acid protects mice against Staphylococcus aureus by targeting vWbp and Coa

    Xiangqian Chen‡

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ‡These authors contributed equally to this work

    Search for more papers by this author

    ,
    Chunjie Hu‡

    Changchun University of Chinese Medicine, Changchun, 130117, China

    Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China

    ‡These authors contributed equally to this work

    Search for more papers by this author

    ,
    Zunhua Shu

    Changchun University of Chinese Medicine, Changchun, 130117, China

    The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130118, China

    ,
    Xingye Wang

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Yicheng Zhao

    Changchun University of Chinese Medicine, Changchun, 130117, China

    Center for Pathogen Biology & Infectious Diseases, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun,130021, China

    ,
    Wu Song

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Xiaoyu Chen

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Mengli Jin

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Yang Xiu

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Xuerui Guo

    School of Pharmacy, Jilin University, Changchun, 130021, China

    ,
    Xiangri Kong

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Yijing Jiang

    Changchun University of Chinese Medicine, Changchun, 130117, China

    ,
    Jiyu Guan

    Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China

    ,
    Lanzi Gongga

    Tibet University Medical College, Tibet, 850000, China

    ,
    Li Wang

    *Author for correspondence:

    E-mail Address: liwang1006@126.com

    Changchun University of Chinese Medicine, Changchun, 130117, China

    &
    Bingmei Wang

    **Author for correspondence:

    E-mail Address: bingmeiwang1970@163.com

    Changchun University of Chinese Medicine, Changchun, 130117, China

    Published Online:https://doi.org/10.2217/fmb-2022-0219

    Aim: Our primary objective was to investigate the protective effects and mechanisms of isovanillic acid in mice infected with Staphylococcus aureus Newman. Methods:In vitro coagulation assays were used to validate vWbp and Coa as inhibitory targets of isovanillic acid. The binding mechanism of isovanillic acid to vWbp and Coa was investigated using molecular docking and point mutagenesis. Importantly, a lethal pneumonia mouse model was used to assess the effect of isovanillic acid on survival and pathological injury in mice. Results & Conclusion: Isovanillic acid reduced the virulence of S. aureus by directly binding to inhibit the clotting activity of vWbp and Coa, thereby reducing lung histopathological damage and improving the survival rate in mice with pneumonia.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Paling FP, Wolkewitz M, Bode LGM et al. Staphylococcus aureus colonization at ICU admission as a risk factor for developing S. aureus ICU pneumonia. Clin. Microbiol. Infect. 23(1), 49.e49–49.e14 (2017).
    • 2. Federspiel JJ, Stearns SC, Peppercorn AF et al. Increasing US rates of endocarditis with Staphylococcus aureus: 1999–2008. Arch. Intern. Med. 172(4), 363–365 (2012).
    • 3. Johnson JR. Rifampin and methicillin-resistant Staphylococcus aureus bone and joint infections. Clin. Infect. Dis. 53(1), 98–99; author reply 99–100 (2011).
    • 4. Naber CK. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 48(Suppl. 4), S231–S237 (2009).
    • 5. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12(1), 547–569 (2021).
    • 6. Na M, Hu Z, Mohammad M et al. The expression of von Willebrand factor-binding protein determines joint-invading capacity of Staphylococcus aureus, a core mechanism of septic arthritis. mBio 11(6), e02472–20 (2020).
    • 7. Kamfose MM, Muriithi FG, Knight T et al. Intravenous ceftriaxone versus multiple dosing regimes of intravenous anti-staphylococcal antibiotics for methicillin-susceptible Staphylococcus aureus (MSSA): a systematic review. Antibiotics (Basel) 9(2), 39–49 (2020).
    • 8. Mcdanel JS, Perencevich EN, Diekema DJ et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin. Infect. Dis. 61(3), 361–367 (2015).
    • 9. Tu H, Xu F, Cheng Y et al. Proteomic profiling of the endogenous peptides of MRSA and MSSA. PeerJ 9, e12508 (2021).
    • 10. Klein EY, Zhu X, Petersen M et al. Methicillin-resistant and methicillin-sensitive Staphylococcus aureus hospitalizations: national inpatient sample, 2016–2019. Open Forum Infect. Dis. 9(1), ofab585 (2022).
    • 11. Zheng Y, He L, Asiamah TK, Otto M. Colonization of medical devices by staphylococci. Environ. Microbiol. 20(9), 3141–3153 (2018).
    • 12. Bjerketorp J, Jacobsson K, Frykberg L. The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol. Lett. 234(2), 309–314 (2004). •• Details that vWbp is a coagulase secreted by S. aureus, which has the ability to bypass the coagulation cascade, activate prothrombin and promote coagulation.
    • 13. Friedrich R, Panizzi P, Fuentes-Prior P et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425(6957), 535–539 (2003). •• Discovers and elucidates the mechanism by which staphylocoagulase induces prothrombin activation.
    • 14. Kroh HK, Panizzi P, Bock PE. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc. Natl Acad. Sci. USA 106(19), 7786–7791 (2009). • vWbp activates prothrombin through a substrate-dependent delayed kinetics mechanism.
    • 15. Panizzi P, Nahrendorf M, Figueiredo JL et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat. Med. 17(9), 1142–1146 (2011).
    • 16. Cheng AG, Mcadow M, Kim HK et al. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathol. 6(8), e1001036 (2010).
    • 17. Cawdery M, Foster WD, Hawgood BC, Taylor C. The role of coagulase in the defence of Staphylococcus aureus against phagocytosis. Br. J. Exp. Pathol. 50(4), 408–412 (1969).
    • 18. Thomer L, Schneewind O, Missiakas D. Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J. Biol. Chem. 288(39), 28283–28292 (2013). • vWbp binds to multiple ligands in human blood to accelerate the formation of protective blood clots by S. aureus.
    • 19. Pappelbaum KI, Gorzelanny C, Grassle S et al. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 128(1), 50–59 (2013).
    • 20. Claes J, Vanassche T, Peetermans M et al. Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein. Blood 124(10), 1669–1676 (2014).
    • 21. Ko YP, Flick MJ. Fibrinogen is at the interface of host defense and pathogen virulence in Staphylococcus aureus infection. Semin. Thromb. Hemost. 42(4), 408–421 (2016).
    • 22. Thomas S, Liu W, Arora S et al. The complex fibrinogen interactions of the Staphylococcus aureus coagulases. Front. Cell. Infect. Microbiol. 9, 106 (2019).
    • 23. Veloso TR, Chaouch A, Roger T et al. Use of a human-like low-grade bacteremia model of experimental endocarditis to study the role of Staphylococcus aureus adhesions and platelet aggregation in early endocarditis. Infect. Immun. 81(3), 697–703 (2013).
    • 24. Hijikata-Okunomiya A, Kataoka N. Argatroban inhibits staphylothrombin. J. Thromb. Haemost. 1(9), 2060–2061 (2003).
    • 25. Vanassche T, Verhaegen J, Peetermans WE et al. Dabigatran inhibits Staphylococcus aureus coagulase activity. J. Clin. Microbiol. 48(11), 4248–4250 (2010).
    • 26. Khadem S, Marles RJ. Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15(11), 7985–8005 (2010).
    • 27. Tung YT, Wu JH, Kuo YH, Chang ST. Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresour. Technol. 98(5), 1120–1123 (2007).
    • 28. Zhong H, Ruan JL, Yao QQ. Two new 4-arylcoumarins from the seeds of Calophyllum polyanthum. J. Asian Nat. Prod. Res. 12(7), 562–568 (2010).
    • 29. Li CY, Lee EJ, Wu TS. Antityrosinase principles and constituents of the petals of Crocus sativus. J. Nat. Prod. 67(3), 437–440 (2004).
    • 30. Saroglou V, Karioti A, Rancic A et al. Sesquiterpene lactones from Anthemis melanolepis and their antibacterial and cytotoxic activities. Prediction of their pharmacokinetic profile. J. Nat. Prod. 73(2), 242–246 (2010).
    • 31. Warner EF, Zhang Q, Raheem KS et al. Common phenolic metabolites of flavonoids, but not their unmetabolized precursors, reduce the secretion of vascular cellular adhesion molecules by human endothelial cells. J. Nutr. 146(3), 465–473 (2016).
    • 32. Delgado-Valverde M, Valiente-Mendez A, Torres E et al. MIC of amoxicillin/clavulanate according to CLSI and EUCAST: discrepancies and clinical impact in patients with bloodstream infections due to Enterobacteriaceae. J. Antimicrob. Chemother. 72(5), 1478–1487 (2017).
    • 33. Li B, Jin Y, Xiang H et al. An inhibitory effect of dryocrassin ABBA on Staphylococcus aureus vWbp that protects mice from pneumonia. Front. Microbiol. 10, 7 (2019).
    • 34. Sperber WH, Tatini SR. Interpretation of the tube coagulase test for identification of Staphylococcus aureus. Appl Microbiol 29(4), 502–505 (1975).
    • 35. Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 12(1), 85–104 (2020).
    • 36. Macarthur Clark JA, Sun D. Guidelines for the ethical review of laboratory animal welfare People's Republic of China National Standard GB/T 35892-2018 [Issued 6 February 2018 Effective from 1 September 2018]. Animal Model Exp. Med. 3(1), 103–113 (2020).
    • 37. Cooper GF, Aliferis CF, Ambrosino R et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif. Intel. Med. 9(2), 107–138 (1997).
    • 38. Knapp S, Wieland CW, Van ‘T Veer C et al. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J. Immunol. 172(5), 3132–3138 (2004).
    • 39. Krishna SN, Luan CH, Mishra RK et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLOS ONE 8(12), e81504 (2013).
    • 40. Yang X, Cheng X, Tang Y et al. The role of type 1 interferons in coagulation induced by Gram-negative bacteria. Blood 135(14), 1087–1100 (2020).
    • 41. Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 8(1), e1002434 (2012). •• vWbp and Coa form a concentrically structured fibrin barrier at the bacterial periphery, protecting S. aureus from phagocytosis by neutrophils.
    • 42. Malachowa N, Kobayashi SD, Porter AR et al. Contribution of Staphylococcus aureus coagulases and clumping factor A to abscess formation in a rabbit model of skin and soft tissue infection. PLOS ONE 11(6), e0158293 (2016).
    • 43. Vanassche T, Peetermans M, Van Aelst LN et al. The role of staphylothrombin-mediated fibrin deposition in catheter-related Staphylococcus aureus infections. J. Infect. Dis. 208(1), 92–100 (2013).
    • 44. Thomer L, Emolo C, Thammavongsa V et al. Antibodies against a secreted product of Staphylococcus aureus trigger phagocytic killing. J. Exp. Med. 213(3), 293–301 (2016).
    • 45. Trivedi U, Madsen JS, Everett J et al. Staphylococcus aureus coagulases are exploitable yet stable public goods in clinically relevant conditions. Proc. Natl Acad. Sci. USA 115(50), E11771–E11779 (2018).
    • 46. Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv. Appl. Microbiol. 96, 1–41 (2016).
    • 47. Mcadow M, Dedent AC, Emolo C et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect. Immun. 80(10), 3389–3398 (2012).
    • 48. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53(7), 2719–2740 (2010).