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Understanding the processes whereby diversity arises and is maintained in pathogen 
populations is pivotal for designing disease control interventions. A particular problem is 
the maintenance of strain structure in bacterial pathogen populations despite frequent 
genetic exchange. Although several theoretical frameworks have been put forward to 
explain this widespread phenomenon, few have focused on the role of genes encoding 
metabolic functions, despite an increasing recognition of their importance in pathogenesis 
and transmission. In this article, we review the literature for evidence of metabolic niches 
within the host and discuss theoretical frameworks which examine ecological interactions 
between metabolic genes. We contend that metabolic competition is an important 
phenomenon which contributes to the maintenance of population structure and diversity 
of many bacterial pathogens.
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Bacterial population structure
Populations of many bacterial pathogens exhibit high levels of genetic diversity. Much of this vari-
ation, however, is structured into discrete ‘strains’ which persist for long periods despite frequent 
horizontal genetic transfer (HGT) both within and among species (Box 1) [1]. The definition of a 
strain varies widely depending upon the methods used for discrimination and the question being 
asked: for example, the variation in metabolic enzymes is structured among many bacteria into a 
limited number of electrophoretic types (ETs) on the basis of differences in electrophoretic mobilities 
(i.e., by multilocus enzyme electrophoresis or MLEE [2]). Classification within bacterial species is 
more typically performed by multilocus sequence typing (MLST) of fragments of metabolic house-
keeping genes dispersed around the bacterial chromosome; the sequence types (STs) thus defined 
tend to be organized into clonal complexes [3]. It is commonly observed that only a subset of clonal 
complexes is significantly associated with a heightened ability to cause invasive disease. Within the 
bacterial pathogen Neisseria meningitidis (the meningococcus), for example, a number of such hyper-
invasive clonal complexes have been observed to persist over several decades and achieved global 
spread [4,5]. Strains can also be defined through their antigenic properties: the distinct serotypes of 
Streptococcus pneumoniae (the pneumococcus) provide one such example.

There are a number of theoretical frameworks that seek to explain the observed patterns of 
population level diversity in bacterial pathogen populations. Several of these assume that bacterial 
pathogen populations are structured primarily through neutral processes, with little or no selection 
occurring [6]. It has been demonstrated that purely neutral mutational drift and recombination are 
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not sufficient to account for the population struc-
ture of a number of bacterial species, including 
N. meningitidis, S. pneumoniae and Staphylococcus 
aureus [7]. A modified model which includes the 
effects of localized transmission, the neutral 
microepidemic model, is able to reproduce the 
observed population genetic structure of these 
pathogens, based on distributions of pairwise 
distances of MLST allelic data  [7]. However, 
Jolley et al. used a coalescent-based approach to 
demonstrate that the number of meningococcal 
STs generated as expected through neutral pro-
cesses alone significantly underestimated the 
number of STs observed in a sample of menin-
gococci from the Czech Republic in 1993  [8]. 
Furthermore, the majority of allele combinations 
persisted for 1 year, and none persisted for more 
than 7 years, suggesting that purely neutral pro-
cesses may not provide an adequate explanation 
for the patterns observed [9].

Non-neutral frameworks invoke competi-
tive interactions among strains as the primary 
driver of bacterial population structure. In these 
models, strains within pathogen populations can 
compete directly within the host – for example, 
through depleting shared nutritional resources 
or producing antimicrobial compounds – or 
indirectly, through the host immune response. 
In the latter case, competition between pathogen 
strains can be mediated by immunological cross-
protection: the degree to which infection by one 
strain prevents successful infection by another. 
Where the dominant immune response to a 

pathogen is against a single variable antigenic 
determinant, strong variant-specific immune 
responses will maintain antigenic diversity in 
the population, whereas strong cross-protective 
responses to a number of pathogen strains will 
act to decrease the number of circulating anti-
genic types  [10]. A balance between these two 
conflicting selection pressures has been shown 
to be important in generating observed levels of 
serotype diversity in S. pneumoniae [11,12]. When 
dominant immune responses target multiple 
antigenic determinants, high levels of variant-
specific immunity can cause pathogen popula-
tions to segregate into discrete strains which do 
not share antigenic determinants [13]. A number 
of well-characterized examples of nonoverlap-
ping antigenic determinants have been shown in 
N. meningitidis. The two variable regions of the 
outer membrane antigen PorA [10], in addition 
to the antigenic iron transporter FetA [5,14], have 
been observed to associate in discordant allelic 
groupings in samples from both carriage and 
invasive disease worldwide. PorA and, to a lesser 
extent, FetA are important vaccine components 
of a number of meningococcal vaccines which 
have been deployed in several countries over the 
past 20 years  [15–17]. Variants of the Neisseria 
opacity-associated proteins, which are used in 
adhesion and invasion, also manifest a nonover-
lapping pattern [18]. Group A Streptococci mani-
fest nonoverlapping associations among variants 
of the surface-presented M protein and T protein 
antigens [19]. Within Group B Streptococci, the 

Box 1. Glossary of terms.
●● 	Antigenic type: classification based on variation in genes encoding targets of immunity
●● 	Bacterial population structure: patterns and organization of genetic diversity observed among 
bacterial populations, over both temporal and spatial scales

●● 	Clonal complex: a group of closely related sequence types, defined by multilocus sequence typing of 
fragments of metabolic housekeeping genes

●● 	Horizontal genetic transfer: the transfer of genetic material from one organism to another, other than 
through vertical descent

●● 	Metabolic competition: any mechanism through which bacteria compete for nutrients and energy 
sources within the host environment, where a lack of such substances inhibits growth

●● 	Metabolic type: constellation of genes within a bacterium which function in the uptake of nutrients 
and metabolic processes

●● 	Nonoverlapping associations: in a population, allelic variants predominantly associate such that a 
certain allelic variant of one gene associates uniquely with one particular allelic variant from another 
gene. This means that the most common strains have unique combinations of allelic variants which 
are not shared by others

●● 	Overlapping associations: the allelic variants do not associate with each other in unique combinations, 
and pathogen strains overlap in their allelic repertoires

●● 	Strain structure: the existence of groups of organisms sharing distinct phenotypes and genotypes 
within a population
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expression of a number of immunodominant 
surface proteins associates in a nonoverlapping 
way with capsular serotype  [20]. Similarly, co-
infection by the bacterial pathogen Anaplasma 
marginales, a prevalent vector-borne pathogen of 
cattle, relies on the expression of nonoverlapping 
antigenic variants of the immunologically 
dominant msp2 antigen [21].

Whereas most theoretical frameworks of 
pathogen population structure have modeled 
the effects of immune-mediated competition, 
few frameworks have considered the effects of 
direct short-term competition among distinct 
strains in the host environment. There is, how-
ever, in vivo experimental evidence as well as 
epidemiological data which suggest that such 
direct competition may play an important role 
in colonization dynamics in a number of distinct 
anatomical sites. For instance, longitudinal stud-
ies in Kenya and Denmark show that the rate of 
acquisition of pneumococcal strains in the naso-
pharynx is higher for noncarriers compared with 
carriers [22,23]. It has also been shown in mouse 
models that the carriage of vaccine-type strains 
of S. pneumoniae inhibits the subsequent coloni-
zation of particular nonvaccine type strains [24]. 
Indirect evidence of ecological competitive inter-
actions can be found among organisms coloniz-
ing the human oral cavity: for example, clinical 
studies have found that patients colonized with 
Streptococcus oligofermentans have a reduced inci-
dence of dental caries caused by Streptococcus 
mutans [25]. A large body of experimental work 
with enteric bacteria suggests that there is also 
intense competition within the human gut [26]. 
Resident microbial communities in the intestine 
are considered to be diverse and also stable in 
composition, and together act to protect against 
the invasion of other microorganisms, including 
many pathogens: a phenomenon referred to as 
colonization resistance [27]. This helps to explain 
the observation that healthy human volunteers 
are not able to be colonized by Escherichia coli 
strains isolated from their own feces, upon being 
fed these strains directly [28].

We propose that metabolic competition is an 
important component of direct ecological com-
petition operating in bacterial pathogen popula-
tions. Although genetic variation in metabolic 
genes has conventionally been viewed as pri-
marily neutral, an increasing body of evidence 
indicates that such variation has important 
functional and evolutionary consequences for 
bacterial populations.

Diversity of metabolic genes
The conventional paradigm of pathogen evolu-
tion proposes that, whereas antigen-encoding 
genes should display genetic variation as a result 
of diversifying selection to avoid recognition by 
the host immune response, the metabolic genes 
should display relatively little variation as they 
are under stabilizing selection for conservation 
of function  [29]. However, although the core 
genomes of bacterial pathogens are primarily 
composed of metabolic genes  [30], there is an 
increasing number of studies which show that 
metabolic and transport genes are also part of 
the variable accessory genome, and that they 
contribute significantly to the diversity observed 
across strains within bacterial populations [31,32].

Efficient bacterial replication is essential for 
colonization and transmission; thus understand-
ing bacterial metabolism within the host is essen-
tial to understanding the spread of pathogens 
among hosts and host–pathogen interactions [33]. 
Differences in metabolic machinery may lead to 
differences in growth rates between strains – for 
example, if different strains assimilate resources 
at different rates. A number of experimental 
studies suggest highly significant links between 
metabolic genes and bacterial growth rates. For 
example, in a series of experiments by Helling, 
the lack of the glutamate-synthesizing enzyme 
glutamate dehydrogenase in Escherichia coli was 
shown at first to result in decreased glucose-lim-
ited growth, but was subsequently compensated 
for by mutations in the ndh, cyo and cyd genes, 
which code for NADH dehydrogenases and ter-
minal oxidases used in ATP synthesis [34]. This 
indicates the existence of alternative metabolic 
pathways in E. coli with differing levels of effi-
ciency and cost. In another study, Sabarly and 
colleagues assayed the growth yield of E. coli 
strains on 95 carbon sources and correlated their 
growth capacities with the presence/absence of 
enzyme-coding genes. They found that most of 
the variation in growth rates was explained by 
the presence/absence of metabolic pathways, and 
was largely independent of phylogeny [35].

In addition to its importance in colonization 
and transmission, bacterial in vivo metabolism 
is a fundamental aspect of virulence and patho-
genesis [33]. Much evidence for the importance 
of metabolism in virulence and pathogenesis in 
a range of bacterial pathogens and host sites has 
accumulated in recent years [36–38]. Most bacte-
rial pathogens encounter a variety of different 
environments within the host during infection, 



Future Microbiol. (2016) 11(10)1342

Perspective  Watkins, Maiden & Gupta

future science group

and must adapt accordingly to make use of alter-
native nutrient sources: a phenomenon which 
has been termed ‘nutritional virulence’  [39]. 
Various experimental studies have shown dif-
ferences in expression of metabolic genes within 
different host environments, including differ-
ences between commensal and invasive strains of 
N. meningitidis, S. agalactiae and S. pneumoniae 
in the nasopharynx and blood, and differences 
in sugar use between commensal and patho-
genic E. coli strains  [36,40–42]. Other screening 
and transcription studies have revealed a num-
ber of metabolic genes that are essential to viru-
lence, including S. pneumoniae, Mycobacterium 
tuberculosis, Helicobacter pylori, S. aureus, Vibrio 
cholera and Salmonella typhimurium, amongst 
others (reviewed by [33,37]).

Mechanisms of metabolic competition
Ecological competition among bacteria involv-
ing the metabolic genes could occur through 
exploitative competition – whereby bacteria 
compete for limited resources but do not directly 
interact – or interference competition, whereby 
bacteria interact antagonistically. The results of 
a number of experimental studies suggest that 
interference competition occurs among several 
bacterial pathogens, through which bacteria pro-
duce harmful substances to inhibit the growth of 
others, such as secondary metabolites, or actively 
restrict or remove a nutrient from its competi-
tors. Mechanisms of interference competition 
both within and among bacterial species have 
been well described elsewhere [33,43] and exploita-
tive competition among pathogenic strains for 
metabolic resources shall be the focus of this 
article. Evidence is accumulating to suggest that 
there is a large variety of nutritional resources 
available to bacteria which colonize and invade 
mammalian hosts, with a particular wealth of 
information for colonization of the airway and 
intestine (Box 2). Through surveying the litera-
ture, we surmise three principal ways through 
which bacterial pathogens may experience com-
petition for metabolic resources within the host. 
Many of the supporting studies cited here use 
S. pneumoniae and E. coli, as such processes in 
the host are particularly well studied for these 
pathogens.

First, two strains may not be able to co-infect 
a host if they utilize an identical repertoire of 
substrates; thus bacterial strains may evolve to 
occupy distinct metabolic niches by utilizing 
different resources (Figure 1A). Strain-specific 

differences in the presence and expression of 
transporters of particular metabolic substrates 
have been shown in a number of studies of 
S. pneumoniae  [38,49]. Linke et al. showed that 
strain-to-strain variation in the ability to utilize 
different lengths of fructooligosaccharide chains 
is determined by diversity at the sus transporter 
locus, with 60–79% of pneumococci able to 
utilize the fructooligosaccharide inulin  [50]. 
Buckwalter and Kingnoted strain-specific dif-
ferences in the absence/presence of 12 distinct 
carbohydrate transporters across pneumococcal 
genomes, from seven independent studies  [38]. 
The construction of pan genome-scale metabolic 
models for E. coli has also shown a large num-
ber of strain-specific differences in the number 
and functional classification of metabolic coding 
sequences and reactions [31]. The metabolic pan 
genome – constructed from the interrogation of 
16 finished genomes – contained 79 ORFs and 
32 reactions not present in the core metabolic 
genome, possibly facilitating the breakdown of 
alternative substrates. Indeed, the results of a 
series of experiments in mice suggest that dis-
tinct E. coli strains are able to use different nutri-
ents for growth in the intestine. Different patho-
genic and commensal E. coli strains each used a 
different repertoire of approximately 6–7 sugars 
to colonize the intestine, of the 18 that E. coli is 
capable of using in vivo [42,51–52]. This supports 
the idea that virulent, invasive E. coli strains are 
able to overcome colonization resistance by tak-
ing advantage of nutrients that are not used by 
resident commensal strains [51].

Second, bacterial strains may occupy distinct 
metabolic niches through binding different host 
structures in order to access the same nutritional 
resource; thus, even if two strains have identical 
substrate repertoires, they may be able to occupy 
distinct niches (Figure 1B). For example, variants 
of family 98 glycoside hydrolases involved in 
fucose utilization in S. pneumoniae bind distinct 
host carbohydrate antigens, showing selectiv-
ity for either Lewis or group A/B antigens [53]. 
Similarly, meningococci encode several surface 
receptors to acquire iron or heme from specific 
iron-binding proteins in the host, including 
hemoglobin, lactoferrin and transferrin, and 
there is a variable distribution of such receptors 
among meningococci. The hemoglobin recep-
tor Hmbr, for example, is significantly over-
represented in invasive isolates [54], and the iron 
transporter FetA is absent from a minority of 
strains [55].
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Third, cocolonizing bacteria may have differ-
ent rates of uptake for particular resources, and/
or different utilization hierarchies for their energy 
sources (Figure 1C). Even if two strains utilize 
an identical repertoire of nutritional resources, 
ecological competition could be reduced if they 
require different amounts of particular substrates 
(e.g., if strain 1 required a large amount of sub-
strate A but only a minimal amount of substrate 
B, and strain 2 required only a small amount of 
substrate A but a lot of substrate B). Bidossi et al. 
used a functional genomics approach to demon-
strate strain-specific differences among pneu-
mococci in the ability to absorb a wide range of 
carbohydrate resources [49]. As well as variable dis-
tributions in the specific uptake systems present, 
the relative intensity at which different substrates 
were fermented was observed to differ between 
strains. Furthermore, a transcriptional analysis 
by Pagliarulo et al. identified fourfold differences 
in expression of the gdhA gene between differ-
ent hyperinvasive lineages of N. meningitidis, 
which is involved in ammonia assimilation [56]. 
In the context of the GI tract, the ‘nutrient niche’ 
hypothesis proposed by Freter [57] states that in 
order to colonize the intestine, each strain must 
use at least one limiting nutrient better than its 
competitors. In support of this, Fabich and col-
leagues found that flhD mutants of E. coli K-12 
were superior colonizers of the mouse intestine 
by using the same sugars more efficiently than 
its wild-type parent, rather than through using 
different sugars [58].

In a series of analyses by Watkins et al.  [59], 
allelic variants of the metabolic genes of 
616 whole genomes of S. pneumoniae were 

demonstrated to show a significantly higher level 
of association than variants of functional cod-
ing genes not belonging to metabolic processes, 
using linkage disequilibrium and mutual infor-
mation metrics. These findings lend support 
to the hypothesis that the metabolic profile of 
pneumococci encodes a number of tightly linked 
and interacting proteins, and it is these success-
ful constellation of alleles that allows them to 
exploit a particular metabolic niche.

Theoretical frameworks incorporating 
metabolic competition
The majority of theoretical frameworks of path-
ogen population structure to date have modeled 
the effects of immunity-mediated competition. 
Few have considered the effects of ecological, 
short-term competition between strains in the 
host environment, including competition at the 
metabolic genes.

Lipsitch assumed strong ecological compe-
tition among serotypes of S. pneumoniae in a 
model simulating the effects of vaccination, the 
results of which were consistent with available 
data  [60]. In another model simulating pneu-
mococcal vaccination, Zhang et al. investigated 
the effects of both direct competition operating 
during carriage in the nasopharynx in addition 
to antibody-mediated immunity [61]. The results 
showed that serotype replacement – a well-doc-
umented phenomenon in which nonvaccine 
serotypes increase at a population level follow-
ing vaccination – is only observed when strong 
ecological competition occurs between strains.

The interplay between ecological competition 
manifested specifically as metabolic competition 

Box 2. Nutrient sources in the mammalian gut and airway.
●● 	The concentration of free sugars in the normal human airway is low [44], yet the human airway still 
provides a wide range of energy sources for bacterial pathogens, including the mucus which coats 
the epithelial layer of the respiratory tract. Many of the components of the host immune system 
secreted into mucus (including immunoglobulins, cytokines) are sources of sugars and amino acids. 
Mucin glycoproteins in mucus are also utilized by some bacteria, and dead respiratory cells potentially 
provide lipids, nucleic acids and proteins [45]. Many bacterial pathogens and commensals are also able 
to access sugars through the breakdown of a variety of diverse sugar structures and glycoconjugates 
which are attached to the surface of host epithelial cells and some are also able to lyse host cells 
directly [46]

●● In contrast, there is an abundance of fermentable substrates available to enteric bacteria in the GI 
tract. In addition to nutrients originating from the host diet itself, multiple metabolic intermediates 
are formed during the breakdown of many dietary components, and protein can also be derived from 
host enzymes and other secretions [47]. As in the respiratory tract, mucus is a rich source of substrates, 
providing a variety of mucins, shed epithelial cells and several smaller metabolites. The outer mucus 
layer of the GI tract comprises mainly commensals which are able to cleave glycans or glycoconjugates 
from epithelial cells; many pathogens exploit the sugars thereupon released when passing through 
the mucus barrier to the epithelial cells [48]
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Figure 1. Ways through which bacterial strains with different metabolic profiles, or metabolic 
types (here MT1 and MT2) are able to reduce ecological competition and co-infect a 
host. (A) Bacterial strains MT1 and MT2 reduce metabolic competition through targeting different 
sets of resources. (B) MT1 and MT2 utilise the same substrates, but access these resources via distinct 
host binding sites. (C) MT1 and MT2 have different rates of uptake and/or utilisation for the same 
substrates. 
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and immunity-mediated competition was 
investigated within a multilocus framework by 
Buckee et al. [9], using an agent-based model. A 
key finding was that, at high levels of competition, 
high frequency strains in bacterial populations 
should show nonoverlapping associations between 
alleles encoding antigen-encoding and metabolic 
genes; in other words, a given metabolic profile 
should primarily associate with a unique antigenic 
profile. Additionally, such associations should be 

stable over long time periods in spite of frequent 
HGT. The rationale behind these nonoverlapping 
associations is that the successful and widespread 
strains have been segregated by selection into dif-
ferent antigenic and metabolic niches in order to 
minimize the effects of immunological competi-
tion (for new hosts) and metabolic competition 
(for nutritional resources within the host). Such 
segregation is consistent with one of the earliest 
axioms of community ecology, Gause’s Principle, 
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which dictates that no two species can occupy 
the same niche as the superior competitor species 
would exclude the other  [62]. These predictions 
were upheld in a series of deterministic mod-
els [59] in which the strengths of immunological 
and metabolic competition were also varied over 
a large range of parameter space; strong nono-
verlapping associations were found at relatively 
low levels of competition, suggesting that even 
weak levels of competition may be important in 
structuring bacterial pathogen populations.

Associations between antigenic type and 
MLST-defined ST/clonal complex, or MLEE-
defined ET are indeed found across a range of 
bacterial pathogens (Table 1). Intriguingly, these 
associations between antigenic type and MLST-
type or MLEE-type appear to be stable over long 
time periods in a number of pathogens. Among 
N. meningitidis for example, identical associa-
tions between clonal complex and several outer 
membrane antigens (including a number of 
vaccine candidates, such as PorA, PorB, FetA, 
fHbp, NHBA and NadA) have been recorded 
over several decades (the longest period recorded 
being 74 years) [5,14,63–65]. Identical associations 
between serotype and ST in S. pneumoniae have 
also been observed over many years (Table 2).

MLST loci comprise fragments of genes that 
encode metabolic processes and are located 
around the chromosome, but can variation at 
these seven loci alone define a metabolic niche? 
To answer this question, associations between 
metabolic genes and antigen-encoding genes 
were explored at the whole genome level by 
Watkins et al. in 616 genomes of S. pneumo-
niae [59]. The metabolic profiles of pneumococcal 
strains, comprising all metabolic and transport 
loci identified in the genome, were highly con-
sistent within a capsular serotype, and signifi-
cantly different between serotypes. They also 
found that alleles of metabolic and transport 
genes were highly consistent within each MLST-
defined ST, suggesting that STs are a proxy for 
the metabolic type among pneumococci.

There are several alternative theories which 
can be put forward to explain the observed 
associations between antigenic and metabolic 
types. These, along with the corresponding 
counter arguments, are presented in Table 3. 
None of these theories individually are able to 
account for the observations presented here; 
however, the processes and selection pressures 
discussed are not mutually exclusive, and it is 
likely that a combination of neutral, selective 

and mechanistic factors play important roles 
in the maintenance and diversity of bacterial 
pathogen structure. For example, the propaga-
tion of persistent multilocus associations over 
time and space is a hallmark of clonal popula-
tions, in which HGT is too rare to break the 
prevalent pattern of clonal population structure. 
Clonal descent will undoubtedly have contrib-
uted to the observations of associations between 
antigenic and metabolic types. Such an explana-
tion is especially pertinent to those pathogens 
which do not experience frequent HGT. Thus, 
although STs and OspC antigen of Borrelia lusi-
taniae show nonoverlapping associations, this 
may be linked to the fact that HGT across the 
chromosome is relatively rare in this species [101]. 
However, all the bacterial species presented in 
Table 1 have been shown in previous studies to 
manifest frequent rates of HGT, which should 
homogenize the associations between antigenic 
type and metabolic type.

The thousands of combinations of antigenic 
and ST found among bacterial pathogens reflects 
the large amounts of diversity generated by HGT 
in these populations [5] Out of the large pool of 
genetic variants only a subset of successful geno-
types with nonoverlapping repertoires of these 
alleles are able to propagate to high frequencies 
(Figure 2). The frameworks of Buckee et al. and 
Watkins et al. assume that all strain combina-
tions are continuously generated in the popula-
tion at low levels, but the prevalent strains which 
emerge manifest a nonoverlapping pattern. It is 
this fitness advantage, of minimized competi-
tion for hosts and metabolic resources, which 
may permit them to persist for many years and 
sometimes disseminate on a global scale [5]. The 
low frequency variants generated by HGT which 
show overlapping metabolic and antigenic vari-
ants are therefore at a fitness disadvantage with 
the dominant nonoverlapping variants. There 
are a few pathogens, such as Leptospira species 
and Legionella pneumophila, for which relevant 
typing data are available, that do not seem to 
manifest nonoverlapping associations between 
antigenic and metabolic type  [106,107]. Other 
pathogens, such as Pseudomonas aeruginosa, and 
S. agalactiae, show inconsistent evidence of asso-
ciations  [108–110]. Perhaps there is not sufficient 
host immune selection pressure created by the 
antigens characterized in the studies to structure 
the population into distinct antigenic groups, or 
sufficiently intense competition at the metabolic 
genes. It is also possible that although immune 
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and metabolic competition may be exerting an 
influence on the population structure of these 
pathogens, highly frequent HGT is eroding the 
associations between antigenic and metabolic 
types that may arise.

The number of species presented in Table 1 is 
limited for several reasons. First, the examples 
presented are constrained by the specific typing 
methods used to characterize pathogens; only 
those studies which include typing informa-
tion on both metabolic and antigen-encoding 
genes were included. Second, there are a num-
ber of pathogens which show very little genetic 
variation among isolates as they evolved only a 
short time ago or have recently passed through 
population bottlenecks. Such monomorphic 
pathogens, including M. tuberculosis, Treponema 
pallidum, Yersinia pestis, Bacillus anthracis and 
Chlamydophila pneumoniae, may not manifest 
antigenic and/or metabolic variation within 
populations for this reason  [111–115]. Low anti-
genic diversity may also result if the primary 
antigens are conserved across the population and 
exert a strong immune response [10].

Implications for clinical 
interventions & disease control
The accumulating evidence for the essential roles 
of variants in metabolic genes in virulence and 
pathogenesis supports the need for further study 
of this area. As well as enhancing our understand-
ing of the disease process, the identification of 
metabolic-associated proteins which play essen-
tial roles in virulence and pathogenesis could be 
exploited to design antimicrobial drugs which 
inhibit virulence-associated characteristics. Such 

an approach is therapeutically attractive as the 
drug would not kill the pathogen outright, and 
consequently would be less likely to select for 
resistance. For example, bacterial ureases are a 
target for the development of novel antimicrobial 
and could lead to new therapeutics for urinary 
tract and gastric infections [33].

The notion that strains of bacterial pathogens 
occupy distinct metabolic niches within the host, 
and that differences in metabolism and transport 
genes lead to differences in transmission and fit-
ness, has a number of important implications for 
clinical interventions. Watkins et al. used a math-
ematical model combining antigen-encoding and 
metabolic loci to explore the effects of metabolic 
competition on serotype-targeted vaccination [59]. 
They found that vaccinating against particular 
serotypes can cause their metabolic components 
to transfer through HGT to nonvaccine sero-
types, an effect referred to as vaccine-induced 
metabolic shift (Figure 3). The authors extended 
the model to include virulence-associated loci 
and found that vaccination resulted in the trans-
fer of virulence genes in addition to metabolic 
genes, from vaccine to nonvaccine strains.

The pneumococcal conjugate vaccines that 
are currently available target only a subset of the 
90 different serotypes (7, 10 or 13 serotypes). 
This has resulted in the increase of nonvaccine 
serotypes following vaccination in a number of 
countries worldwide  [116]. The predictions of 
vaccine-induced metabolic shift are consistent 
with a number of changes observed in pneu-
mococcal population structure following mass 
vaccination. A number of nonvaccine serotypes 
have become associated with MLST profiles of 

Table 2. Number of years over which combinations of serotype and multilocus sequence typing-
defined sequence type have been recorded for Streptococcus pneumoniae, according to the 
PubMLST website.

Sequence type Serotype Timespan (years) Frequency (number of isolates)

15 14 37 84
53 8 25 48
63 14 23 137
81 19F 22 80
81 23F 30 338
90 6B 28 126
113 18C 32 32
156 9V 24 136
172 19A 34 67
247 4 31 25
447 37 11 31
Owing to the nature of the database, these figures represent the minimum length of time over which such isolates have existed. 
Data were taken from the PubMLST website [100] on 22 July 2015.
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vaccine serotypes since the introduction of the 
heptavalent pneumococcal conjugate vaccine 
(PCV-7). In North America, for example, there 
has been a significant increase in the prevalence 
of the nonvaccine serotype 19A: initially this 
was due to clonal expansion of the pre-existing 
genotype ST199, but ST320 – previously asso-
ciated with the vaccine serotype 19F – has now 
replaced ST199 as the most common genotype 
in 19A invasive disease and carriage in several US 
regions and in Canada  [117–119]. Increases have 
also occurred in the prevalence of the ST69519A 
strain since the introduction of PCV-7, in 

which the vaccine serotype 4 capsule has been 
switched for a 19A  [120,121]. Furthermore, the 
model predictions helped to explain changes 
in genomic population structure observed in a 
dataset of 616 genomes of S. pneumoniae from 
the USA [122], in which metabolic profiles were 
observed to shift from vaccine to nonvaccine 
serotypes following vaccination  [59]. Such pre-
dictions were also consistent with the increase in 
virulence-associated pili genes observed among 
pneumococcal nonvaccine strains following 
vaccination  [123]. Importantly, the observa-
tion of vaccine-induced metabolic shift in the 

Table 3. Alternative theories to explain associations between antigenic and metabolic types in bacterial pathogens.

Theory Summary Limitations

Neutral model [7] Bacterial population structures are maintained by 
neutral mutational drift

Unable to account for the population structures of 
S. aureus, N. meningitidis and S. pneumoniae [7]

CLONAL Epidemic model [6] The rapid spread of epidemic clones can result in 
temporary linkage disequilibrium between strains

Unable to account for the longevity of sequence 
types of N. meningitidis [8,9]

Neutral microepidemic 
model [7]

Bacterial population structures are maintained by 
neutral mutational drift, modulated by HGT and 
epidemic transmission chains

Unable to account for the diversity and longevity of 
sequence types of N. meningitidis [8,9]

Restriction modification 
systems [102]

Whole genome clades are associated with different RM 
systems, which prevent the exchange of DNA between 
clades despite frequent HGT

Associations between clades and RM systems 
could be interpreted as a consequence of 
the diversification processes caused by other 
mechanisms (e.g., metabolic and immunological 
competition), as opposed to the cause of the 
observed structure

Biased sampling [6] Linkage disequilibrium in recombining populations 
can result superficially from biased sampling of 
hyperinvasive clones which are prevalent in invasive 
disease isolates, and thus not representative of the 
natural population as a whole

Nonoverlapping associations are evident in a 
number of population samples obtained solely from 
carriage. The studies in Table 1 and data in Figure 3 
comprise both invasive and carriage collections

Epistasis [103] Nonoverlapping associations between metabolic 
and antigenic types have arisen as a result of epistatic 
interactions between antigenic and metabolic areas 
of the genome, resulting in heightened fitness. 
Specialized metabolic machinery may be required 
for the uptake and synthesis of particular antigens 
(e.g., polysaccharide sugars) 
Strong epistasis would result in consistent associations 
of antigenic and metabolic types being observed 
across different time periods and geographical 
locations. Consistent associations between serotype 
and sequence type are frequently reported 
for S. pneumoniae

Croucher et al. [103] used knockouts of the capsule 
locus in S. pneumoniae and found that serogroup-
specific adaptations may not be responsible for 
the associations. They also examined the genomic 
distribution of carbohydrate uptake genes to 
assess if limitations to acquiring the necessary 
carbohydrates to synthesize a given serogroup 
accounts for the associations, but results did not 
generally support this hypothesis 
The theoretical frameworks predict that associations 
between antigenic and metabolic type are 
arbitrary (i.e., an antigenic type may associate 
with one metabolic type in one location/time 
period, and with another in a different location/
period). Indeed, one antigenic type associates with 
multiple sequence types/clonal complexes (and vice 
versa) across different time periods and regions in 
N. meningitidis [5,9,14] 
For S. pneumoniae, there are still examples of 
multiple sequence types linked to the same serotype 
in distinct locations [94,104–105]

HGT: Horizontal genetic transfer; RM: Restriction modification.
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Figure 2. Nonoverlapping associations between alleles at antigen-encoding and multilocus sequence typing-defined metabolic 
loci in bacterial pathogen populations. Allelic combinations among (A) serotype and sequence type (with a frequency >80 isolates per 
combination) in Streptococcus pneumoniae. (B) PorA; FetA variant and clonal complex (with a frequency >20) in Neisseria meningitidis.  
(C) PorA variant and clonal complex (with a frequency >30) in Campylobacter jejuni. All data were extracted from the PubMLST and 
multilocus sequence typing websites as described in Figure 2.
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USA suggests that neutral processes alone may 
not account for the dynamics observed within 
pneumococcal populations.

The metabolic shifts predicted by the model 
also have implications for resistance to antimi-
crobial drugs. The alleles associated with drug 

resistance may also shift to nonvaccine sero-
types as a result of the removal of competition 
at these loci. Indeed, many postvaccine vari-
ants possessing metabolic and virulence factors 
previously associated with vaccine strains show 
increased resistance to antimicrobial drugs [118]. 
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Figure 3. Vaccine-induced metabolic shift, following vaccination against antigenic type a. In a population 
comprising two antigenic types (a and b) and two metabolic types (1 and 2; where 1 has a slightly higher 
transmission fitness than 2), there are four possible strains if full recombination is assumed (a1, b1, a2 and b2). As a 
result of immunological and metabolic competition, the population falls into nonoverlapping associations, with the 
surviving strains showing minimal overlap in antigenic and metabolic alleles (a1 and b2). Despite strain b1 having 
a higher transmission efficiency than b2, it is suppressed by metabolic competition with a1. Following vaccination 
against serotype a, the previously suppressed strain b1 expands and competitively excludes strain b2 owing to its 
greater transmission efficiency. 
Adapted with permission from [59].
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It is also possible that the increased transmis-
sion fitness of such strains may help to allevi-
ate the fitness costs associated with antibiotic 
resistance.

Finally, understanding the distinct metabolic 
niches of virulent pathogen strains could ulti-
mately help in the design of probiotic treatments. 
As E. coli strains have slightly different sugar 
requirements, each using approximately seven 
sugars in total and including at least one sugar 
not used by the others in vivo, it would be pos-
sible in theory to prevent invasion by virulent 
strains through precolonizing the host with spe-
cific combinations of strains which together fill 
the nutritional niche of the invasive strains [26]. 
Indeed, inoculating mice with specific mixtures 
of commensal E. coli strains is able to prevent 
invasion by the virulent strain O157:H7 [52,124]. 
As different virulent strains (or pathotypes) have 
distinct nutritional requirements, no single com-
bination of commensal strains will be able to 
prevent invasion against all virulent strains – but 

it may be feasible to artificially engineer such 
strains that do [42].

Conclusion
Populations of bacterial pathogens are para-
doxically structured into distinct strains despite 
frequent HGT. There are a number of theories 
and conceptual frameworks which attempt to 
account for these observations (Table 3), but few 
have focused on bacterial metabolism. There is 
an increasing evidence base which suggests that 
bacterial strains compete for metabolic resources 
within the host; it is possible that this metabolic 
competition may be sufficiently strong so as to 
structure pathogen populations into distinct meta-
bolic types, which overlap less in their resource 
requirements (Figure 1). A series of mathemati-
cal models in which bacterial strains are defined 
by antigenic and metabolic genes [9,59] predicted 
that strong competition would result in bacterial 
populations in which the predominant strains 
manifest nonoverlapping associations between 
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antigenic and metabolic alleles. Associations 
between MLST-defined metabolic genes and outer 
membrane antigens have been well-documented 
in N. meningitidis, a subset of which were associ-
ated with invasive disease and have persisted for 
several decades [5,9,85,86]. More recent allele-based 
analyses of 616 pneumococcal whole genomes [59] 
(originally published by Croucher  et  al.  [122]) 
suggested that such nonoverlapping associations 
were also evident at the whole-genome level. After 
reviewing the literature, we find that such associa-
tions are found between antigenic and metabolic 
genes in a variety of bacterial pathogens despite 
frequent HGT (Table 1 & Figure 2).

Future perspective
As Rohmer recently argued, bacterial metabo-
lism is one of the most fundamental aspects of 
virulence and transmission of bacterial patho-
gens, yet our understanding of it remains lim-
ited [33]. It is important that we understand the 
mechanisms which underlie the evolution and 
maintenance of metabolic diversity both within 
and among bacterial species – whether they are 
shaped by neutral processes or by selection and 
competition. Many of the studies on bacterial 
metabolism to date have been based on tran-
scriptional data obtained during infection or 
colonization models, comparative genomics and 
deletion mutants grown in vitro. It is of concern 
that some of the data obtained from these stud-
ies are inconsistent with each other, depending 
on the model system used, the type of infection 
and the route of inoculation  [33]. This stresses 
the importance of making use of model systems 
which mimic the host environment as closely 
as possible. Indeed, much remains to be under-
stood about resource-based metabolic competi-
tion mediated through biofilms, quorum sens-
ing and through interactions with other species 
present in the natural host microbiome. Such 
interactions may prove vital to the way in which 
bacterial strain compete for nutrients in the host, 
but are relatively poorly understood; for exam-
ple, it is likely that E. coli obtains several of its 
required sugars locally from specific anaerobes 
in mixed biofilms [26].

A number of novel technologies, in addition 
to improvements to current techniques, have 
emerged in recent years which should further 
our understanding of bacterial pathogen metab-
olism. Flow-cell technologies, in which bacteria 
are supplied with a constant flow of nutrients 
and oxygen within a cell, allow researchers to 

better understand the formation of biofilm com-
munities and the physiological and competitive 
processes of the bacteria therein. A variety of 
such methods are now available, enabling the 
investigation of nutrient gradients, spatio-
temporal analyses of metabolism and growth 
in a controlled in vitro environment  [125]. An 
alternative approach to metabolism research, 
which makes use of isotopically labeled carbon 
atoms in metabolic substrates, has recently been 
used to investigate the metabolic diversity of a 
number of bacteria in soil communities  [126]. 
In conjunction with nanometer-scale second-
ary ion MS, which measures the isotopic com-
position of single cells, the rate at which single 
cells assimilate isotopically labeled substrates 
into their biomass can be determined  [127]. 
Zimmerman and colleagues recently made use 
of flow cell technologies in combination with 
nanometer-scale secondary ion MS to gain a 
detailed understanding of nitrogen and carbon 
dioxide fixation at the cellular level in the green 
sulfur bacterium Chlorobium phaeobacteroides. 
Perhaps such technologies could be utilized to 
investigate the metabolic heterogeneities among 
pathogenic strains. These detailed cellular 
approaches would complement the data obtained 
from whole-genome flux metabolic models, in 
which genetic information on primary metabolic 
pathways obtained from whole genomes are veri-
fied through flux-balance analysis in chemostat 
cultures [128].

In order to further our understanding of the 
importance of within-host metabolism in patho-
genesis, it would be valuable for both existing 
and novel techniques to be used in experimen-
tal models which provide a representation of 
the natural disease-causing process, which is 
as realistic as possible. Studies which employ 
in vivo transcriptomics in infection and colo-
nization models continue to reveal a wealth of 
information on metabolic control of patho-
genesis (reviewed by  [129]), as they provide a 
comprehensive picture of the genes which are 
upregulated during pathogenesis. Such studies 
are in turn complemented by gene knock-out 
experiments to verify the role of various meta-
bolic genes in the control of pathogenesis. For 
example, Jorth et al. used RNA sequencing to 
analyze the genes which were involved in the 
pathogenesis of the opportunistic human path-
ogen Aggregatibacter actinomycetemcomitans. 
They found that genes involved in fermenta-
tive metabolism and anaerobic respiration were 
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EXECUTIVE SUMMARY
Paradoxical population structures of bacterial pathogens

●● 	Many bacterial pathogens are composed of distinct strains despite frequent horizontal genetic transfer (HGT).

●● 	The prevalent strains which arise in many bacterial populations show nonoverlapping associations between alleles of 
metabolic and antigen-encoding genes, which can persist for many years despite high rates of HGT.

●● 	A number of frameworks have been proposed to account for the population structures of bacterial pathogens, but 
few can account for the high rates of HGT and long-term persistence of strains, as well as the nonoverlapping patterns 
observed.

Potential importance of the metabolic genes

●● 	With the advent of next-generation sequencing techniques and high-throughput functional assays, metabolic 
genes have been demonstrated to play important roles in transmission and virulence in recent years. The notion 
that pathogen strains occupy distinct metabolic niches has gained increasing support from studies with enteric and 
respiratory pathogens.

●● 	Most frameworks of population structure have modeled only antigenic variants, or do not distinguish explicitly 
between different types of genes.

●● 	Buckee et al. and Watkins et al. investigated the effects of competition operating at polymorphic/variable metabolic 
and antigen-encoding loci in a series of mathematical models. The results showed stable associations between alleles 
at metabolic and antigen-encoding loci, suggesting that both immune-mediated and metabolic competition may be 
important phenomena in the structuring of bacterial pathogens.

Future studies

●● 	Metabolic competition among pathogen strains has important implications for clinical interventions including 
vaccines, antibiotic resistance and probiotic treatments.

●● 	A growing number of studies are focusing on the importance of the metabolic genes in transmission, competition and 
virulence; conceptual frameworks that account explicitly for the metabolic genes may form a useful basis for analyzing 
the data accumulated.

important, and used mutational analyses to 
verify the importance of particular enzymes in 
the process [130].

With the current rate of accumulation of 
whole genome sequence data, the increasing 
number of functional genomics studies and 
growing interest in metabolic modeling, in 
addition to new technologies, it is likely in the 
next 5–10 years that we will gain large increases 
in metabolic genomic and functional data. 
Mathematical models in which strains can be 
divided into different genomic functional com-
ponents may act as useful conceptual tools with 
which to analyze the wealth of accumulating 
whole genome data and interpret the patterns 
observed. Such models allow a number of pre-
dictions to be tested, both experimentally and 
in silico through the analysis of whole genome 
data. The observation of metabolic shift follow-
ing vaccination in pneumococcal populations in 
the USA provides just one example of how one 
can test the hypothesis of metabolic competi-
tion. As well as vaccine-induced metabolic shift, 

differences between metabolic genes may also be 
found between strains of successive outbreaks 
or epidemics. There are a number of examples 
of newly introduced and highly successful viru-
lent strains which out-compete the previously 
dominant strains, but with all strains bearing 
the same principal antigens. The newly invad-
ing strain may have superior metabolic char-
acteristics which allow it to out-compete the 
resident strains, even with an identical antigenic 
repertoire.

Much work remains in order to further test 
the hypothesis that strains compete metabolically 
within the host, and it is through an interdisci-
plinary approach of experimental work, genomic 
and functional genomic analysis and mathemati-
cal modeling that we can fully understand the role 
of metabolic competition as a driver of bacterial 
population structure.
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