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The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically 
conserved class of enzymes that catalyze hydroxylation reactions in humans by 
acting on various types of substrates, including metabolic intermediates, amino 
acid residues in different proteins and various types of nucleic acids. The discovery 
of jumonji (Jmj), the founding member of a class of Jmj-type chromatin-modifying 
enzymes and transcriptional regulators, has culminated in the discovery of several 
branches of histone lysine demethylases, with essential functions in regulating 
the epigenetic landscape of the chromatin environment. This work has now been 
considerably expanded into other aspects of epigenetic biology and includes the 
discovery of enzymatic steps required for methyl-cytosine demethylation, as well as 
modification of RNA and ribosomal proteins. This overview aims to summarize the 
current knowledge on the human Jmj-type enzymes and their involvement in human 
pathological processes, including development, cancer, inflammation and metabolic 
diseases.

Keywords:  chromatin modification • epigenetic • histone demethylation • Jumonji • lysine 
methylation • oxygenases

Background
Several landmark discoveries have defined 
the Jumonji (Jmj) oxygenase protein fam-
ily and provided important connections to 
chromatin and human biology. This family 
of iron (Fe2+)- and 2-oxoglutarate (2-OG)-
dependent enzymes has its phylogenetic roots 
in prokaryotes, thus highlighting the func-
tional versatility and critical importance of 
this protein class for life in an oxygen atmo-
sphere [1]. Regarding their roles in chromatin 
biology, the first breakthrough discovery was 
a gene trap approach to identify novel factors 
involved in mouse embryonic development 
– this study defined the jmj gene (named 
JARID2 in humans) as a novel class of tran-
scriptional regulators. The gene was given the 
Japanese name jumonji, literally translated 
as ‘cruciform’, based on the cross-like shape 
found during neural groove development of 
jmj mutant mice [2,3]. Analysis of the domain 
arrangements and primary structure of this 

gene identified an ARID/Bright domain, 
found in many DNA-binding proteins, 
immediately suggesting chromatin associa-
tion of the gene product, as well as novel, 
so-called Jmj N and C domains (JmjN and 
JmjC, respectively) [3,4]. Further bioinfor-
matic analysis of the JmjC domain revealed 
this to be an evolutionarily conserved protein 
fold belonging to the cupin family [5].

Mechanistic features of Jmj enzymes
Cupins are ancient protein domains, found in 
archaea, bacteria and eukarya, and are often 
metalloenzymes with metal ion-containing 
active sites based around a histidine clus-
ter – hence the jumonji C (JmjC) enzymes 
belong to a large family of metalloproteins 
that, despite low sequence similarities, share 
a common Fe2+- and 2-OG-dependent cata-
lytic core. The human 2-OG oxygenase fam-
ily consists of over 60 members, to which 
the different Jmj-type lysine demethylases part of
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contribute significantly (Figure 1). All members of this 
family share few conserved sequence motifs necessary 
for iron and cofactor binding (with exceptions dis-
cussed below), and are mechanistically defined by their 
ability to hydroxylate their specific substrates using an 
activated oxo-ferryl intermediate [6]. In brief, the cata-
lytic sequence proceeds through distinct steps of 2-OG 
cofactor and molecular oxygen binding and activation, 
resulting in a highly reactive oxo-ferryl intermediate 
that reacts with the specific substrate atom, usually 
resulting in a hydroxylated substrate and concomi-
tant CO

2
 and succinate formation. In terms of lysine 

demethylase reactions, the hydroxylated substrate is 
an unstable hemiaminal intermediate derived from the 
lysine methyl hydroxylation of the Nε- side-chain [6]. 
This intermediate then fragments into formaldehyde 
and a lysine side-chain decreased by a methyl group. 
Importantly, this mechanism allows to demethylate all 
possible Nε-methyl states (mono-, di- and tri-) found 
in methylated histone lysine residues and thus differs 
significantly from the mechanism of monoamine oxi-
dases such as LSD1 and LSD2 (KDM 1A and B) [7] 
which are important mediators of chromatin function, 
and which can only demethylate mono- or di-methyl 
lysine states. Other important functions found in the 
human 2-OG family comprise hydroxylation of meta-
bolic intermediates (e.g., phytanoic acid degradation 
[PHYH] [8], or involvement in carnitine synthesis 
[BBOX, TMLH] [9]), amino acids found, for example, 
in collagen (e.g., PLOD enzymes (Figure 1)) [10], or 
transcription factors (e.g., HIFα by 2-OG oxygenases 
such as FIH and PHD enzymes).

Structural features of 2-OG enzymes
The JmjC domain is a double-stranded β-helical 
(DSBH) fold also called the jelly-roll fold or double 
Greek motif. The DSBH fold is composed of eight 
β-strands that form a β-sandwich structure comprised 
of two four-stranded antiparallel β-sheets (Figure 2) 
[11]. Most 2-OG oxygenases also contain additional 
secondary structure elements that surround the DSBH 
and define the different subfamilies. This includes 
additional β-strands that extend the DSBH, at least one 
helix on the C-terminal side of the DSBH, and inserts 
between the fourth and fifth β-strand. This DSBH 
core fold provides a rigid scaffold for the cosubstrates 
2-OG and Fe2+, which are located in the more open 
end of the barrel (Figure 2). The iron is coordinated 
by two histidinyl residues together with a glutamyl or 
aspartyl residue in a conserved HxE/DxH motif found 
among 2-OG oxygenases. The 2-OG binding is less 
well conserved, and the cofactor coordinates the iron 
in a bidentate manner via its 2-oxo group and one of 
its 1-carboxylate oxygens, whereas the 5-carboxylate 

is usually bound to the side-chain of a basic residue 
(Arg/Lys) and to a hydroxyl group from a Ser/Thr or 
Tyr residue. The substrate binding varies considerably 
among the different subfamilies of 2-OG oxygenases/
demethylases and the specific interactions identified 
thus far are beyond the scope of this review. However, 
crystallographic studies have revealed that it often 
involves residues from the first and second β-strand, 
together with strands and loops that extend the DSBH. 
Other protein domain modules, such as a plant home-
odomain (PHD), Tudor, AT-rich interaction domain 
(ARID) or CxxC zinc finger motifs that vary between 
the different subfamilies, are usually also required for 
interaction with DNA/RNA or chromatin protein 
substrates [11–13]. An overview of the different protein 
domains as well as annotation of substrate specificities 
found in Jmj enzymes with defined or hypothetical 
roles in chromatin biology is given in Table 1.

Jmj-enzymes as transcriptional regulators
Paradoxically, the founding member of the Jmj family, 
JARID2, lacks essential residues necessary for catalytic 
activity but nevertheless has been shown in various 
studies to be a key factor in mammalian develop-
ment [3]. JARID2 shows sequence homology with the 
JARID1 (KDM 5) family which is defined by the pres-
ence of JmjC/JmjN and ARID domains. The molecu-
lar mechanism by which JARID2 modulates mam-
malian development is not well understood, however 
it is now established that it associates with Polycomb 
group (PcG) proteins in several cell types, including 
embryonic stem (ES) cells, and is also critical for ES 
cell differentiation [62–65]. PcG proteins were identi-
fied more than 30 years ago as regulators of homeobox 
(Hox) genes and development in Drosophila melano-
gaster [66,67] and also have a critical role in mammalian 
adult tissue homeostasis and cancer [68].

Importantly, these studies highlight the fact that 
most, if not all Jmj-type chromatin enzymes func-
tion as parts of transcriptional or chromatin protein 
complexes and in addition to their catalytic roles exert 
their function as scaffold proteins. The second major 
breakthrough in Jmj enzyme biochemistry and under-
standing as transcriptional regulators was therefore 
the discovery that members of the Jmj family indeed 
possess catalytic activity towards methyl-lysine histone 
substrates. This effort was spawned by the discovery 
of the first lysine demethylase, LSD1 [7,69] (which 
belongs to the amine oxidase family) followed by the 
characterization of distinct members of the Jmj family 
displaying methyl-lysine demethylase activity. These 
chronological discoveries led to the current and sys-
tematic nomenclature system of lysine demethylases 
(KDM) [70].
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Identification of methyl-lysine demethylases was 
important, because post-translational modifications 
of N-terminal, unstructured tails of histone proteins 
had been previously recognized as key-components 
in the regulation and signaling of functional states 
of the epigenomic landscape. Accordingly, reversal of 
these modifications has important consequences in 
processes such as gene regulation or genome stabil-
ity; for example, trimethylated lysine 9 of histone 3 
(H3K9me3) indicates heterochromatic or repeti-
tive regions, whereas H3K4me3 marks regulatory 
elements associated with active promoters or tran-
scription start sites, and H3K27me3 often specifies 
developmentally repressed genes [71]. With the dis-
covery of histone demethylation, lysine methylation 
of histone residues is now considered reversible and 
to respond dynamically to changes in metabolism 
or chromatin environment [72–74]. At present several 
classes of histone modifications and their respective 
enzymatic modification systems have been identified 
[72,75] and amongst their epigenetic substrate marks, 
lysine and arginine modifications are probably the 

best studied: acetylation and methylation of lysine 
residues, as well as methylation of arginine [72,75,76]. 
Whereas acetylation of histone tails is correlated 
with gene activation, the influence of histone meth-
ylation on regulating gene transcription depends 
on the exact residue methylated and the number of 
added methyl groups, both for arginine and lysine 
residues [72,75,76].

This review focuses on the description of Jmj-type 
chromatin hydroxylases and their involvement in 
human chromatin biology and associated patholo-
gies. We will focus our description on the different 
KDM subfamilies, but also include the nucleotide 
hydroxylases as well as several further subfamily 
members with suspected nuclear or chromatin func-
tions (Figure 1). For completeness, we will also briefly 
describe the monoamine oxidases of the KDM1 
family despite being mechanistically distinct. It is 
worth noting that since the discovery of Jmj enzymes 
as mediators of histone demethylation [15] with its 
important consequences in chromatin biology and 
transcriptional regulation, not in every case have suf-
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Figure 1. Phylogenetic tree of the human 2-oxoglutarate-dependent oxygenases. Different subfamilies discussed in the text are 
highlighted in various colors. Red asterisks indicate members for which no enzymatic activity has been determined yet.
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ficiently stringent methods (e.g., product identifica-
tion through mass spectrometry) been employed to 
properly characterize these enzymes. Therefore in 
several instances it remains to be established what 
their true endogenous substrates and inferred biologi-
cal functions are.

KDM1 subfamily
Starting with the groundbreaking discovery of LSD1 
(KDM1A) as methyl-lysine demethylase [7], a series 
of studies revealed the enzymatic and biological roles 
of this amine oxidase that was able to demethyl-
ate histone methyl-lysine residues H3K4me2/1 and 
H3K9me2/1 in an FADH-dependent reaction (sum-
marized in [73,77]). Following this work, the paralog 
LSD2 (KDM1B) with activity towards H3Kme2/1 
was discovered [78,79]. Analyses of mice with targeted 
deletion of LSD1 or LSD2 revealed their essential roles 
in development [78,80], and other studies highlight the 
essential role of LSD1 in embryonic [81,82] and cancer 
stem cell biology [83,84]. Several investigations found 
that both KDM1 forms are aberrantly expressed in 
a variety of human tumor types (see [73]) and, taken 
together, provide the rationale for current inhibitor 
development. LSD1 is found in a variety of chromatin 
complexes, which include components such as HDAC/
CoREST, BRAF35, BHC80 and noncoding RNA [85], 
and possibly the NuRD remodeling complex [86]; in 
these cases LSD1 functions as a repressor through its 
H3K4me2 demethylase activity. In contrast, LSD1 
can associate with nuclear hormone receptors such as 
the androgen or estrogen receptor [69,87], and in these 

situations LSD1 shows H3K9me2 demethylase activ-
ity, thereby promoting target gene transcription. Taken 
together, the KDM1 enzymes are involved in various 
context-specific functions (e.g., in transcription ini-
tiation, enhancer modification or chromatin remod-
eling [73]). Interestingly, LSD1 is able to demethylate 
other nonhistone, chromatin-associated factors such 
as p53 or DNA methyltransferase 1 (DNMT1) [80,88], 
indicating that lysine demethylase substrates are not 
restricted to histone molecules.

KDM2 subfamily
Soon after the breakthrough discovery of histone lysine 
demethylation mediated by LSD1, mechanistically dif-
ferent members of the Jmj family were shown to catalyze 
removal of methyl-lysine histone marks [15]. The first 
enzymes characterized within this family were human 
FBXL10 and FBXL11 (KDM2B and KDM2A, respec-
tively), catalyzing the demethylation of H3K36me2/1 
histone chromatin marks [15], an activity that ortholo-
gous forms display as well. The full-length proteins 
show a domain organization comprising JmjC, CxxC, 
PHD, Fbox and leucine-rich repeats (Table 1). Fbox-
containing domains are involved in formation of cul-
lin-Fbox protein-E3 ubiquitin ligase complexes, which 
suggests a link between KDM2, histone ubiquitina-
tion and proteasomal degradation. The CxxC zinc fin-
ger domains are modules that recognize unmethylated 
cytosine residues in a CpG dinucleotide context. Usu-
ally unmethylated, contiguous stretches of CpG ele-
ments are often found overlapping with a large fraction 
(up to 70%) of promoter and transcriptional start sites 
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Figure 2. The overall fold of the catalytic JmjC domain in iron- and 2-oxoglutarate-dependent histone demethylases and nucleotide 
hydroxylases. (A) Jmj prototype member JmjD2A (PDB ID: 2OQ7) in complex with Ni2+ (which replaces the endogenous Fe2+) and 
the 2-oxoglutarate competitive inhibitor N-oxalyl glycine (NOG). The double-stranded β-helical core elements are labeled I–VIII 
and colored cyan, the additional β-strands in blue and the helices in red. Ni2+ is shown as a green sphere and NOG as yellow sticks. 
(B) Overlay of the catalytic core (displayed are the active site metal, the Glu-His triad of active site residues and NOG) of human 
JmjD2A (green) compared to human ALKBH2 (PDB ID: 3BTX; light blue), indicating similar folding patterns of the catalytic domain. 
(C) Catalytic core of human methyladenosine demethylase FTO (PDB ID: 3LFM [14]) demonstrating the double-stranded β-helical fold 
and including the active site metal (blue sphere).
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Table 1. Domain organization and substrates of human Jmj-type oxygenases.

Name Domain architecture Histone substrate Nonhistone substrate Ref.

KDM2     

FBXL10  H3K36me1/me2, 
H3K4me3 

Unknown [15,16]

FBXL11 H3K36me1/me2 p65, NF-κB [15,17]

KDM3     

JmjD1A H3K9me2/me1 Unknown [18,19]

JmjD1B H3K9me2/me1 Unknown  [18,19]

JmjD1C Unknown Unknown  [19]

HR Unknown Unknown   

KDM4    

JmjD2A H3K9me2/me3, 
H3K36me2/me3, 
H1.4K26me2/me3

Trimethylated lysine from chromatin 
repressor WIZ, CDYL1, CSB and G9a 
proteins

[20–22]

JmjD2B H3K9me2/me3, 
H3K36me2/me3, 
H1.4K26me2/me3

Trimethylated lysine from chromatin 
repressor WIZ, CDYL1, CSB and G9a 
proteins

[20–22]

JmjD2C H3K9me2/me3, 
H3K36me2/me3, 
H1.4K26me2/me3

Trimethylated lysine from chromatin 
repressor WIZ, CDYL1, CSB and G9a 
proteins

[20–22]

JmjD2D H3K9me2/me3, 
H1.4K26me2/me3

Unknown [20,22]

JmjD2E H3K9me2/me3, 
H1.4K26me2/me3

Unknown [20]

JmjD2F Unknown Unknown  

KDM5     

JARID1A H3K4me1/me2/me3 Unknown [23–27]

JARID1B H3K4me1/me2/me3 Unknown [23–27]

JARID1C H3K4me1/me2/me3 Unknown [23–27]

JARID1D H3K4me1/me2/me3 Unknown [23–27]

JARID2 No enzymatic 
activity defined

Unknown  

KDM6     

UTX H3K27me2/me3 Unknown [28–32]

UTY Unknown Unknown  

JmjD3 H3K27me2/me3 Unknown [28–32]

KDM7     

PHF2 H3K9me2 Unknown [33]

PHF8 H3K9me2/me1, 
H4K20me1

Unknown [34–38]

†Unpublished (MINA53). 

: JmjC; : PHD; : JmjN; : TUDOR; : LRR; : TPR; : ARID; : FBOX; : wHTH; : GATAL; : zf-C2HC4; : CxxC; : zf-C5HC2; : PLU; : AlkB; 
: RRM; : MTase; :  DSBH1; :  DSBH2; : Zn-binding; :  FTO CTD.
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Name Domain architecture Histone substrate Nonhistone substrate Ref.

KIAA1718 H3K9me2/me1, 
H3K27me1/me2

Unknown [34]

Hydroxylases

NO66 H3K4me1/me2/me3 
H3K36me2/me3

Rpl8 [39,40]

MINA53 † H3K9me3 Rpl27a [39,41]

JmjD4 Unknown Unknown  

JmjD5/
KDM8

H3K36me2/me1 NFATc1 hydroxylation [42,43]

JmjD6 H3R2me2,H4R3me2/
me1, H2A/H2B, H3/H4

U2AF2/U2AF65, LUC7L2, [44–47]

JmjD7 Unknown Unknown  

JmjD8 Unknown Unknown  

FIH Unknown HIF-1α; ARD-containing proteins [48–51]

HSPBAP1 Unknown Unknown  

TYW5 Unknown tRNAPhe [52]

Nucleotide hydroxylases    

ALKBH1 Unknown Dealkylation of 1-methyladenosine and 
3-methylcytosine in single-stranded 
DNA

[53,54]

ALKBH2 Unknown Dealkylation of 1-methyladenosine and 
3-methylcytosine in single-stranded 
DNA

[53,54]

ALKBH3 Unknown Dealkylation of 1-methyladenosine and 
3-methylcytosine in single-stranded 
DNA

[53,54]

ALKBH4 Unknown Lysine demethylation in actin (murine) [55]

ALKBH5 Unknown Methyl-6-adenine [56]

ALKBH6 Unknown Unknown  

ALKBH7 Unknown Unknown  

ALKBH8 Unknown tRNA [57]

TET1 Unknown Oxidation of 5-methylcytosine and 
formation of 5-hydroxymethylcytosine, 
5-formylcytosine and 5-carboxycytosine

[58,59]

TET2 Unknown Oxidation of 5-methylcytosine and 
formation of 5-hydroxymethylcytosine, 
5-formylcytosine and 5-carboxycytosine

[58,59]

TET3 Unknown Oxidation of 5-methylcytosine and 
formation of 5-hydroxymethylcytosine, 
5-formylcytosine and 5-carboxycytosine

[58,59]

FTO Unknown Methyluracil, methylthymine, 
demethylation of N6-methyladenosine

[60,61]

†Unpublished (MINA53). 

: JmjC; : PHD; : JmjN; : TUDOR; : LRR; : TPR; : ARID; : FBOX; : wHTH; : GATAL; : zf-C2HC4; : CxxC; : zf-C5HC2; : PLU; : AlkB; 
: RRM; : MTase; :  DSBH1; :  DSBH2; : Zn-binding; :  FTO CTD.

Table 1. Domain organization and substrates of human Jmj-type oxygenases (cont.).
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(so-called CpG islands [CGIs]), enforcing the notion 
that they contribute to gene regulation by providing 
a suitable environment for chromatin complexes [89]. 
Elegant work has provided evidence that FBXL10 and 
FBXL11 are recruited to the majority of mammalian 
unmethylated CGIs [90–93] through their CxxC-Zn 
finger domains. KDM2 enzymes thereby contribute 
to a specific chromatin environment surrounding CpG 
sites, independent of the transcriptional states of the 
particular gene. For example, FBXL11 is bound to 
90% of annotated CpG sites in murine ES cells, cre-
ates a unique H3K36me2 depleted signature that dis-
tinguishes CpG/promoter structures from bulk chro-
matin, and possibly provides a permissive environment 
allowing subsequently chromatin elements such as reg-
ulatory and transcription factors to bind [90]. Interest-
ingly, FBXL10 shows a largely overlapping occupancy 
of binding sites when compared to FBXL11 [91–93] and, 
in addition, defines a CGI subset through binding to 
Polycomb repressive complex 1 (PRC1), which medi-
ates histone 2A (H2A K119) ubiquitylation through 
the RING1B component of this noncanonical PRC1 
complex. This is in line with data about the activ-
ity of CGI1033, the Drosophila KDM2 ortholog that 
regulates PRC1-mediated H2A monoubiquitylation, 
independent of its demethylase function [94] and, col-
lectively, provides novel insights how PRC1 is directed 
to its target genes. The localization of KDM2 enzymes 
to unmethylated DNA regions is consistent with mass 
spectrometry studies using nucleosome preparations, 
demonstrating enrichment at H3K9me3/unmethyl-
ated DNA nucleosomes [95]. Other chromatin func-
tions of KDM2 forms may be related to heterochroma-
tin formation and ribosomal gene transcription [16,96].

These studies give evidence for the essential role of 
KDM2 genes during development and in general for an 
emerging picture of chromatin architecture and func-
tion. The general targeting of KDM2 enzyme forms to 
CpG-containing promoter regions can explain many 
of the various phenotypes observed in several biologi-
cal systems. For example, by being part of the Oct4/
Sox2 regulatory axis, KDM2 enzymes can regulate 
reprogramming, pluripotency and stem cell proper-
ties [97–102], associate with corepressors such as BCL-6 
corepressor (BCOR) [98,103], or control senescence and 
proliferation through repression of the Ink4b locus 
[99,104,105] and hence KDM2 involvement in oncogenic 
processes has been analyzed [106–108]. From these stud-
ies, it is apparent that KDM2 enzymes exert their criti-
cal importance through enzymatic (i.e., H3K36me 
demethylase activity) and nonenzymatic scaffolding 
functions (i.e., as being part of chromatin protein com-
plexes). In addition, it has been shown that FBXL11 
regulates the activity of the transcription factor NF-κB 

through direct demethylation of methylated Lys218 
and Lys221 in NF-κB, a modification that is installed 
through the methyltransferase NSD1 [17].

KDM3 subfamily
In humans the evolutionarily conserved KDM3 sub-
family comprises four proteins, JmjD1A-C and the 
related hairless (HR) gene product. These proteins 
differ considerably in amino acid chain-length but 
have two regions in common that are both required 
for demethylase activity: a C

2
HC

4
-zinc finger-like 

domain followed by a C-terminal ∼220-residue-long 
JmjC-domain that shares approximately 65% over-
all similarities [18,19]. Both full-length and truncated 
versions of JmjD1A and B specifically demethylate 
H3K9me2/me1 substrates while no demethylase activ-
ity has been described for human JmjD1C or HR yet. 
The demethylase activity of JmjD1A is inhibited by 
iron chelators and divalent metals (Co2+ and Ni2+) [109] 
that replace the ferrous iron at the catalytic site, as well 
as by NO that forms a nitrosyl-iron complex in the 
catalytic pocket [110]. JmjD1A-C enzymes are expressed 
in many cell lines or tissues and are primarily local-
ized to the nucleus. Several phosphorylation sites have 
been reported for all members in the KDM3 subfam-
ily that could be important for substrate recognition 
and signaling, but the impact of these modifications is 
unknown at present [19,111].

JmjD1A was identified by its interaction with the 
androgen receptor (AR) and acts as a coactivator of AR-
mediated transcription [18]. The protein is also known 
as KDM3A, JHDM2 or testis-specific gene A (TSGA) 
since it is highly and dynamically expressed during 
spermatogenesis. Male knockout mice are infertile with 
small testes and a severe reduction in sperm count, 
which suggests that JmjD1A positively regulates the 
expression of genes involved in sperm chromatin con-
densation and maturation [112,113]. JmjD1A-knockout 
mice also exhibit an adult obesity phenotype, which 
implies an important role in transcriptional control of 
metabolic genes in muscle and adipose tissue [114,115]. 
The protein is upregulated in human cells exposed 
to hypoxia and its expression is regulated by HIF-1α 
that binds to a specific hypoxia responsive element 
in the JmjD1A promoter [116]. The hypoxia signaling 
pathway plays an important role in tumor progression, 
and JmjD1A has recently been associated with many 
types of cancers. Significantly elevated levels have been 
reported in several human cancer cells [117] including 
bladder, lung, hepatocellular [118], prostate [119], colorec-
tal [120] and renal cell carcinoma [121], and treatment of 
cancer cell lines with siRNA targeting JmjD1A results 
in significant suppression of proliferation [118], tumor 
angiogenesis and macrophage infiltration into tumor 
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tissues [117]. Although the exact role of JmjD1A in tumor 
progression remains to be elucidated it is considered a 
potential therapeutic target in the treatment of cancer.

JmjD1B also has the synonyms KDM3B/
JHDM2B/5qNCA. In humans, the gene is located 
in the 5q31 chromosomal region, which is frequently 
deleted in myeloid leukemias [122] and in breast cancer 
[123]. JmjD1B is a suggested tumor suppressor [124] that 
regulates the expression of the leukemic oncogene lmo2 
[125] and it is also found to specifically interact with 
the transcriptional repressor suppressor of cancer cell 
invasion (SCAI) [19]. JmjD1C/JHDM2C was origi-
nally referred to as TRIP8 [126]. Two transcripts have 
been reported for this gene where the major transcript 
(variant 2) consists of a TRI8H1 domain with the 
zinc finger motif, a TRI8H2 domain with a thyroid 
hormone receptor β-binding region, and a C-terminal 
JmjC domain [127,128]. JmjD1C is similar to JmjD1A, 
an AR-interacting coactivator (see above) [129], that is 
suggested to perform a transcriptional regulatory func-
tion in testes development by regulating the expression 
of the steroidogenesis marker p450c17, via SF-1-medi-
ated interactions [130]. JmjD1C is expressed in a variety 
of human tissues and its reduced expression in human 
breast cancer tumors compared to normal breast tis-
sues suggests a putative role in tumor suppression [129]. 
No H3K9me2/1 demethylase activity has thus far been 
detected for the human protein [19], although all the 
conserved residues known to be important for enzy-
matic activity are conserved. A recent report that used 
both mutational analysis of single residues and domain 
swapping of both the JmjC- and the Zn-finger domain 
with JmjD1A/B revealed that both the sequence iden-
tity within the JmjC domain and in the sequence 
N-terminal of the JmjC domain are important for 
enzyme activity [19]. In other KDMs it has been shown 
that single amino acid substitutions are sufficient to 
completely abrogate enzymatic activity [15] and it is 
possible that thus far unidentified residues involved in 
substrate binding differ between the different KDM3 
homologs. Further studies are needed to elucidate 
whether JmjD1C utilizes other substrates or cofactors, 
or if it has a predominant scaffolding function.

The HR protein plays a critical role in the mainte-
nance of hair growth but the underlying mechanisms 
are still unclear. The protein is expressed in the skin 
but also the CNS [131,132] where it is suggested to func-
tion as a corepressor for multiple nuclear receptors 
[133–135] including the thyroid hormone receptor, the 
retinoic acid receptor-related orphan receptors and the 
vitamin D receptor [136]. HR also interacts with histone 
deacetylases, including HDACs 1, 3 and 5, and this 
interaction supposedly is responsible for the corepres-
sor activity observed for HR [137]. Mutations in the HR 

protein (C622G, N970S, D1012N, V1136D) are asso-
ciated with congenital alopecia or atrichia with papular 
lesions [131,138]. These pathogenic mutants occur pri-
marily within the JmjC and the Zn-finger domain and 
appear to be essential for its co-repressor activity [136].

KDM4 subfamily
The KDM4 subfamily of histone demethylases com-
prises four members, JmjD2A-D. The proteins are 
defined by an N-terminal JmjN and JmjC domain that 
in JmjD2A-C is followed by two tandem PHD and 
tudor domains (Table 1). These enzymes catalyze the 
demethylation of H3K9me3/me2 with a preference for 
the tri-methyl state, a histone mark associated with gene 
repression and found in heterochromatin. In addition, 
JmjD2A-C catalyze the demethylation of H3K36me3 
albeit at a lower rate [20]. A less well-studied repres-
sive histone mark, H1.4K27me, is also reported to be 
demethylated by all KDM4 members [22]. JmjD2A‑C 
isoforms are also found to catalyze demethylation 
of trimethyl-lysine peptides of chromatin repressors 
WIZ, CDYL1, CSB and G9a proteins [21], indicat-
ing that KDM4 members can antagonize chromatin 
repressive marks and regulate gene transcription. A 
further two members of the human KDM4 subfam-
ily (JmjD2E and JmjD2F) are known to exist but are 
currently considered to be pseudogenes [139] due to lack 
of intronic sequences in their genes. However, in vitro 
studies demonstrate that at least the catalytic domain 
of human JmjD2E is highly active and shows similar 
substrate specificities as JmjD2D [20].

The involvement of JmjD2A, B and C in cancer 
is now unequivocally established, highlighting the 
importance of these enzymes as potential targets for 
drug discovery (reviewed recently [140,141]). Many 
studies over the past 6 years have focused on the role 
of JmjD2 demethylases in progression of hormone 
responsive and hormone non-responsive cancers in 
both prostate and breast, underpinning the coregu-
lation with nuclear hormone receptors. For example, 
Cloos et al. [142] showed that JmjD2A, B and C are 
increased in prostate cancer tissues followed by studies 
demonstrating KDM4 enzymes to be coactivators of 
the androgen receptor [143,144], in addition to roles in 
androgen independent proliferation of prostate cancer 
cells [145]. More recently [146,147] it was demonstrated 
by siRNA approaches that JmjD2B regulates AR tran-
scriptional activity and controls stability of AR by 
prevention of proteosomal degradation of the recep-
tor. JmjD2C (GASC1) has been shown to be amplified 
in triple-negative (estrogen, progesterone and HER2 
receptor-negative) breast cancers [148]. Gene silenc-
ing studies demonstrate clear antiproliferative effects 
of JmjD2A knockdown in (estrogen receptor [ER]-
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negative breast cancer cells [149], and downregulation 
of JmjD2A in ER-positive breast cancer cells leads to 
reduced cell proliferation associated with decreased 
levels of cyclin D1 [150]. Yang et al. [151] showed that 
JmjD2B is highly expressed in ER-positive primary 
breast cancer and that JmjD2B is a target gene for ER 
itself, underlining the evidence for the importance 
of JmjD2B in the etiology of ER-positive breast can-
cers [152,153]. JmjD2B and JmjD2C are targets for the 
hypoxia inducible transcription factor HIF1α in can-
cer cell lines [154], and hence are of possible importance 
in regulating transcriptional responses in a hypoxic 
tumor environment. A role for the lipopolysaccha-
ride (LPS)- and TNF-inducible enzyme JmjD2D in 
regulating H3K9me3 levels, and hence activity of 
upstream enhancer elements in a variety of cell types, 
was recently demonstrated [155].

Given the wealth of publications on the KDM4 
family and cancer, relatively little has been published 
on their role in epigenetic control of other key pro-
cesses such as embryonic development or normal tis-
sue remodeling. Recent studies revealed a function for 
JmjD2A in specification of neural crest cells in the early 
mouse embryo [156]. Conditional gene ablation studies 
and transgenic studies in mice provide further insights 
into the function of KDM4 enzymes in development, 
for example, the generation of mice with a knockout or 
overexpression of JmjD2A in the heart shows a role for 
JmjD2A in cardiac hypertrophy in response to cardiac 
stresses [157]. More recent studies provide insights into 
how KDM4 enzymes regulate cell fate determination. 
In vitro and in vivo studies [158] have demonstrated a 
role for JmjD2B in commitment of mesenchymal stem 
cells (MSC) to the osteogenic lineage by removing the 
repressive H3K9me3 marks from osteogenic lineage-
selective genes such as DLX5, thus favoring osteoblas-
togenesis over adipogenesis. JmjD2B has also been 
shown to be a target gene for the transcription factor C/
EBPβ, a transcription factor that is involved in preadi-
pocyte proliferation and differentiation. In this study, 
a knockdown of JmjD2B inhibited mitotic cell expan-
sion and terminal differentiation of the preadipocyte 
cell line, 3T3-L1 [159].

More recently, several studies demonstrated a role 
for the H3K9me3 demethylase JmjD2D (KDM4D) 
in oncology, inflammation and drug metabolism. In 
mice, JmjD2D assists the nuclear receptor constitu-
tive androstane receptor (CAR), a key regulator of 
drug metabolizing enzymes in induction of a neonatal 
metabolic gene program persisting through adult life 
[160]. JmjD2D also interacts with the tumor suppres-
sor p53 and controls proliferation [140,161], and activity 
of cell-type specific enhancer regions in immune cells 
through H3K9me3 demethylation [155].

KDM5 subfamily
As with many of the JmjC lysine demethylases, the 
KDM5 family is composed of multidomain members. 
These are defined by the presence of both JmjC and 
JmjN domains but also a DNA-binding, ARID domain 
[162] and a C

5
HC

2
 zinc finger motif as well as methyl-

lysine- or methyl-arginine-binding PHD domains 
involved in histone-substrate recognition (Table 1) [163]. 
There are four genes described within the human fam-
ily, namely JARID1A (KDM5A/RBP2), JARID1B 
(KDM5B/PLU1), JARID1C (KDM5C/SMCX) and 
JARID1D (KDM5D/SMCY). All KDM5 members 
demethylate the H3K4me3 histone mark [23–27], a 
signature indicative of transcriptional activation, and 
hence KDM5 are considered transcriptional corepres-
sors. One important function appears to be as mem-
bers of chromatin complexes, for example, JARID1A 
is found associated to the PRC2 Polycomb complex, 
important in establishing repressive chromatin marks 
during development, and JARID1C can be identified 
in complexes with other repressive chromatin modu-
lators such as HDAC1/2/REST, or the H3K9 meth-
yltransferase G9a [77,164]. KDM5 enzymes are found 
around the transcriptional start sites of a large set of 
target genes, where they are thought to fine-tune the 
transcriptional output, as indicated by modest tran-
scriptional responses upon depletion of, for example, 
JARID1B – effects, which nevertheless are critical for 
cellular responses in development and disease [73].

JARID1A was discovered as an interaction partner 
of the retinoblastoma protein (Rb), a key regulator of 
cell cycle control and differentiation [165], hence its alias 
as Rb-binding protein (RBP2). Interactions between 
the two proteins can promote cellular differentiation 
[166], in addition to a role for JARID1A and demeth-
ylation of H3K4 in the control of cellular senescence 
[167]. JARID1A regulates HOX gene activity during 
development [23], underlining the importance of KDM5 
enzymes in stem cell biology. The role of JARID1A also 
extends to other areas of cellular control, with an exam-
ple being modification of the circadian clock period [168]. 
In cancer, the NUP98/JARID1A gene fusion has been 
described as a cryptic translocation involved in pediatric 
acute megakaryoblastic leukemia [169], and additionally 
the JARID1A locus was identified in a recent GWAS 
analysis as a susceptibility gene in ankylosing spondy-
litis [170]. Importantly, JARID1A has been implicated 
in facilitating an altered chromatin state that promotes 
drug-tolerant subpopulations of cancer cells [171].

JARID1B displays an important yet complex role in 
stem cell biology by blocking differentiation in embry-
onic and hematopoietic stem cells [172,173], however 
in a different study it was found to be dispensable for 
embryonic stem cell maintenance and critical for neu-
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ral differentiation [174]. JARID1B is also implicated in 
the control of cellular senescence [167]. It is a deregu-
lated factor in several cancer types, for example, it can 
suppress tumor progression in breast cancer cells [175], 
and is specifically expressed in melanoma [176], as well 
as breast cancer [177]. The involvement of JARID1B 
in cancer stem cell maintenance highlights its role in 
tumorigenesis [178,179].

JARID1C and JARID1D are located on the X- 
and Y-chromosomes respectively and may well have 
diverged from a single ancestral sex chromosome [180]. 
Intriguingly, this segregation to the gonosomes offers 
some interesting prospects regarding sex-specific gene 
regulation, however, it should be noted that JARID1C 
is not subject to X-inactivation [181]. The ubiquitously 
transcribed JARID1C is known for its role in X-linked 
intellectual disability (XLID). It is highly expressed 
in brain tissue and the gene is found to be frequently 
mutated in this condition of male cognitive impair-
ment [180]. There is also a potential role for JARID1C 
variants in autism spectrum disorder [182]. Taken 
together, these data present evidence for an important 
role for JARID1C in normal brain function, by regu-
lating expression of important neuronal genes [164]. In 
tumor biology, JARID1C interacts with the von-Hip-
pel–Lindau protein and has been shown to regulate 
gene expression and to suppress tumor growth [183].

JARID1D transcripts are detected in a wide range 
of male tissues and a JARID1D-derived peptide has 
been identified as the male-specific histocompatibility 
antigen (H-Y) [184–186]. The JARID1D genomic locus 
is associated with a region of the Y-chromosome des-
ignated azoospermia factor region; a region involved 
in spermatogenesis. It is thought that JARID1D inter-
acts with the meiosis-regulatory protein MSH5 during 
this process [187]. Furthermore, deletion of this gene 
has been detected in prostate cancer [188]. It has been 
shown that PCGF6/MBLR can directly interact with 
JARID1D to enhance its demethylase activity via a 
C-terminal domain [26].

KDM6 subfamily
Since the identification of JmjD3 and UTX as H3K27 
demethylases in 2007 [28–32], numerous publications 
have emerged describing the functions of H3K27 
demethylase enzymes in various biological contexts 
such as development, inflammation and oncology. 
The human KDM6 subfamily consists of three dis-
tinct members, namely JmjD3, UTX and UTY with 
documented histone lysine demethylase activities for 
UTX and JmjD3 (KDM6A and B). Whereas UTX 
and UTY are located on X and Y chromosomes, 
respectively, JmjD3 is found on chromosome 17. All 
KDM6 members have a JmjC domain followed by a 

GATA-like DNA-binding domain, whereas UTX and 
UTY also have N-terminal located protein interaction 
(tetratricopeptide repeat [TPR]) domains (Table 1) 
[189]. Whereas the catalytic role of JmjD3 and UTX 
is undisputed, critical scaffolding and protein interac-
tion functions of all KDM6 members have been rec-
ognized. For example, Sola et al. reported that during 
mouse neural stem cell differentiation, the N-terminal 
region of JmjD3 stabilizes the key transcription factor 
p53 in a demethylase-independent manner and con-
tributes to nuclear localization of p53 [190], or during 
T-cell development JmjD3 associates with Tbox pro-
teins independent of its catalytic role [191,192]. However, 
a key mechanism of JmjD3 and UTX appears to be 
their ability to remove H3K27me3 chromatin marks 
which anchor Polycomb repressive complexes and are 
often found in ‘bivalent’ chromatin domains thought 
to be in a transcriptionally ‘poised’ state [193].

JmjD3 is expressed in human, rhesus monkey and 
mouse oocytes during metaphase [194], and plays a role 
in oocyte preimplantation (e.g., in bovine fertiliza-
tion), since knockdown of JmjD3 in oocytes inhibited 
H3K27me3 demethylation and impacted blastocyst 
[195], and later endoderm and mesoderm development. 
This is accomplished through methylation of bivalent 
chromatin domains and their poised transcriptional 
states [71], by removal of H3K27me3 marks, thus 
enabling expression of key developmental genes such as 
WNT3, DKK1 or FOXH1 involved in Wnt and Nodal 
pathways [196,197]. Multiple studies highlight the key 
role of H3K27 demethylases in cellular differentiation, 
for example, in later stages of embryo development, 
JmjD3 is largely involved in regulation of genes respon-
sible for body and limb morphogenesis, including HOX 
and T-box transcription factors [198,199]. However, 
here the enzymatic function of JmjD3 appears to be at 
least in part dispensable. The importance of H3K27 
demethylases is further underpinned by their roles in 
induced pluripotent stem cell (iPS) biology. Silencing of 
JmjD3 in mouse embryonic fibroblasts (MEFs) during 
iPS reprogramming enhanced iPS formation, whereas 
ectopic expression of JmjD3 inhibited reprogramming, 
an effect that is mediated through both demethylase-
dependent and -independent pathways [200]. Whereas 
the demethylase-dependent function mediates removal 
of H3K27me3 repressive marks on genes involved in 
reprogramming such as Ink4/Arf, the demethylase-
independent pathway involves PHF20 for ubiquitina-
tion, thereby leading to degradation [200]. Other work 
has shown that JmjD3 is involved in bone cell differ-
entiation, for example, knockdown of JmjD3 caused 
significantly reduced osteogenic differentiation of 
mesenchymal stem cells to osteoblasts [158]. Osteoclast 
development is partly regulated by H3K27 demethyl-
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ation, by controlling H3K27me3 levels at the promoter 
of the key osteoclastogenic transcription factor NFATc1 
[201]. A number of studies indicated that JmjD3 also 
plays an important role in neural differentiation and 
commitment [202,203]. Here, JmjD3 is one of the early 
neural differentiation regulators modulated by BMP4 
in neural stem cells and is crucial to activate TGFβ-
responsive genes [204,205]. In retinoic acid (RA)-induced 
neural differentiation, an increased expression level of 
JmjD3 was shown to remove H3K27me3 at the HOX 
gene regulatory elements [199]. Mash1, a key gene in RA 
neuronal differentiation, is also regulated by a similar 
mechanism [206], whereas silencing of an RNA bind-
ing protein induces expression levels of JmjD3 in RA 
neurogenesis [207]. Importantly, a JmjD3-knockout in 
mouse resulted in perinatal lethality, affecting the pre-
Botzinger complex (PBC) complex, which is the pace-
maker of the CNS respiratory rhythm generator [202]. 
The critical role of UTX in developmental effects is 
underscored by the discovery of mutations in the human 
gene associated with Kabuki syndrome, an intellectual 
disability syndrome also associated with mutations in 
the H3K4 MLL methyltransferase [208,209].

A role in inflammation was found for KDM6 
enzymes, since JmjD3 expression in macrophages is 
regulated through the NF-κB signalling pathway in 
LPS-stimulated macrophages [28]. It was found that 
JmjD3 associates with 70% of LPS-inducible genes 
[210,211], though it is unclear whether JmjD3 is directly 
involved in transcription of these genes [212]. A direct 
effect on regulating TNF promoter K27 methylation 
and transcription was demonstrated in a study using 
a H3K27 demethylase inhibitor [189]. Stimulation of 
mouse macrophages by IL-4 induces JmjD3 via the 
STAT6 pathway and leads to activation of several anti-
inflammatory genes [213]. In addition, in mice, the 
polarization of anti-inflammatory macrophages dur-
ing helminth infection is modulated by JmjD3 [214]. 
In T cells, JmjD3 is involved in T-helper cell lineage 
commitment [191], through interaction with T-box 
transcription factors. Expression of HPK1/MAP4K1, 
a kinase that negatively regulates T-cell immune 
response, is influenced by JmjD3-mediated demethyl-
ation of H3K27 [215]. Overexpression of JmjD3 causes 
upregulation of HPK1, which in turn suppresses T-cell 
responses. Hence, blocking of JmjD3 activity could be a 
potential therapeutic approach for the treatment of sys-
temic lupus erythematosus [215]. During wound heal-
ing, JmjD3 and UTX are upregulated at the wound site 
and control epidermal differentiation [216,217]. JmjD3 is 
also overexpressed in vasculitis [218] where it regulates 
expression of Itaga2b and Mpl in megakaryocytes [219].

Unsurprisingly, the critical function of H3K27 
demethylases (KDM6 enzymes) in controlling key 

developmental factors is reflected also through their 
involvement in oncology. Importantly, the particular 
role (either as tumor suppressor or oncogene) depends 
on the particular cellular context. Numerous stud-
ies have demonstrated overexpression of JmjD3 in 
cancer cell lines or tumor biopsies, also associated 
with increased proliferation or control of anti-apop-
totic genes such as Bcl-2 [211,220–223], or for example 
aberrant repressive PcG methylation patterns in 
medulloblastoma [224,225].

However, in several instances KDM6 enzymes can 
also be regarded as tumor suppressor genes by coun-
teracting the oncogenic function of PcG proteins, for 
example by controlling the INK4A/ARF locus that 
comprises tumor suppressor genes p16INK4A and 
p14ARF involved in cellular senescence. For example, 
in cells undergoing oncogenic stress, JmjD3 is induced 
by RAS/RAF signaling pathways and activates P16/
INK4a and p14/ARF, causing p53-dependent cell 
cycle arrest [226–228].

JmjD3 is involved in the epithelial–mesenchymal 
transition (EMT), and is overexpressed in invasive 
breast carcinoma. Knockdown of JmjD3 prevented 
breast cancer infiltration, and overexpression of JmjD3 
affected the expression of a range of adhesion mol-
ecules, including downregulation of E-cadherin and 
upregulation of N-cadherin and fibronectin. Detailed 
analysis revealed that during TGFβ stimulated EMT, 
JmjD3 removes H3K27me3 at the promoter of an 
EMT-inducer gene, SNAI1, thus allowing transcrip-
tion of the gene [229]. In SW480-ADH colon cancer 
cells, calcitrol (vitamin D3, 1,25-(OH)2D3 induces 
JmjD3 expression thus controlling critical target genes. 
Knockdown of JmjD3 induced SNAI1-mediated 
EMT, upregulation of mesenchymal markers and 
downregulation of epithelial proteins [230,231]. Expres-
sion of JmjD3 correlates with expression of vitamin D 
receptor but is inversely correlated with expression of 
SNAI1 in 96 human colon tumors [230,231]. Lastly, 
mutations found in the UTX or JmjD3 genes suggest a 
possible role in the oncogenic process [232,233].

Little is currently known about the function of 
UTY, a gene showing a large number of splice variants 
[234], but encodes a minor HLA-B8 HY-antigen, impli-
cated in graft/host interactions [235]. A recent genetic 
study identified downregulation of UTY in the predis-
posing haplogroup I of the Y chromosome in coronary 
artery disease [236].

KDM7 subfamily
The human KDM7 subfamily consists of three mem-
bers: KIAA1718 (KDM7A), PHF8 (KDM7B) and 
PHF2 (KDM7C), showing a characteristic domain 
organization with an N-terminal PHD domain, and a 
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catalytic Jmj domain (Figure 1 & Table 1). The C-ter-
mini are comprised of coiled–coiled domains and 
structurally undetermined amino acid stretches. These 
C-terminal regions have been shown to be important 
for association with RNA polymerase or transcription 
factors such as the retinoic acid receptor (RAR) and 
possibly cell cycle regulators such as E2F1, and con-
tain nuclear localization signals or phosphorylation 
sites [237]. Several reports unequivocally demonstrate 
a catalytic role of KDM7 members in demethylation 
of repressive histone marks such as H3K9me1/2, 
H3K27me1/2 or H4K20me1 (summarized in [237]) 
with distinct differences in substrate specificities 
among the various enzymes. The critical importance 
of these activities in mediating transcriptional coactiva-
tion is highlighted through association with H3K4me3 
marks (through the conserved PHD modules [34]), and 
oxidative removal of repressive histone marks. This cre-
ates a permissive chromatin environment by facilitating 
transcription through subsequent acetylation of lysine 
residues after methyl mark removal which is accom-
plished through KDM7 enzymes [237]. The cooperative 
role of histone marks in KDM7 mediated coactivation 
is further emphasized through phosphorylation of Ser 3 
of histone 3 (H3S3), an important histone mark during 
mitotic progression, which also prevents KDM7 bind-
ing to mitotic chromosomes [238,239], in addition to the 
cell cycle-dependent phosphorylation of, for example, 
PHF8, a critical event in cell-cycle progression [240]. The 
importance of KDM7 members in gene transcription is 
demonstrated through chromatin immunoprecipita-
tion followed by next-generation sequencing, showing 
promoter occupancy at a large fraction of transcription-
ally active genes [33,239–241]. Besides their roles in RNA 
polymerase II (RNA Pol II)-mediated transcription, at 
least PHF8 and PHF2 are also involved in RNA Pol 
I-mediated RNA gene transcription [33,35,242]. The 
pathophysiological roles of KDM7 members include 
involvement in cancer, such as RARα coactivation in 
pro-myelocytic leukemia [243], regulation of proinflam-
matory responses [244] and development (e.g., of neural 
tissues) [245]. PHF2, a H3K9me2 demethylase [33], has 
been shown to play a role in breast cancer [246]. Several 
mutations described in PHF8 are causative of Hamel–
Siderius syndrome [247–249], an X-linked mental retarda-
tion often accompanied by developmental malforma-
tion such as cleft lip/cleft palate [250] or microdeletions 
in autism disorders [251], in line with observations on 
the critical roles of KDM7 enzymes during neuronal 
development [36]. Interestingly, another 2-OG enzyme, 
trimethyllysine hydroxylase found within the small 
molecule branch (TMLHE, Figure 1), was identified 
along with PHF8 in an X-chromosome exome sequenc-
ing study of autism and intellectual disability cases [252].

Other putative Jmj-type demethylases 
& amino acid hydroxylases
This group (see Figure 1) of human 2-OG oxygenases 
comprises a functionally diverse group of enzymes sev-
eral of which have well-described roles, such as factor 
inhibiting HIF (FIH), or which have been rarely stud-
ied to date (e.g., JmjD8). These enzymes have, beside 
the Jmj core domains, few predicted or structurally 
verified additional domains, the lack of chromatin-
binding domains especially suggests potential func-
tions other than histone modification. Indeed, with 
few studies conducted thus far, the role in histone 
modification appears, in most instances, secondary at 
best. Nevertheless, for several of these 2-OG enzymes, 
hydroxylation of amino acids (e.g., asparagine or histi-
dine residues) in nonhistone proteins has been clearly 
shown by using mass spectrometry techniques.

Among the best-studied members of the Jmj fam-
ily is FIH, an asparaginyl hydroxylase that modifies 
an asparagine residue (Asp803) in the C-terminal 
transactivation domain of HIFα proteins. These 
transcription factors regulate key programs involved 
in metabolic adaptation to low O

2
 tension, such as 

energy metabolism, redox and pH homeostasis, and 
O

2
 supply, as well as many other functions [253]. FIH-

mediated HIFα hydroxylation is important to regu-
late interaction with the transcriptional coactivator 
p300, a function that is impaired under low oxygen 
levels [254]. HIFα activity is regulated by FIH in 
concert with prolyl hydroxylases (see Figure 1) such 
as PHD1 and PHD2, which regulate proteasomal 
degradation of HIFα under normoxic conditions. In 
normoxia, PHD and FIH enzymes act synergistically 
to degrade and inactivate HIF-1α. Under hypoxic 
conditions, the PHD enzymes no longer hydroxylate 
HIFα, leading to stabilization and accumulation of 
the HIF-1α subunit. FIH remains active at this stage 
and continues to repress HIFα activity until condi-
tions of severe hypoxia occur, where FIH ceases to 
hydroxylate the asparagine residue in the C-terminal 
domain and releases HIFα repression. FIH-null mice 
do not display a phenotype related to increased HIF 
or hypoxia responses, but show significant metabolic 
changes such as reduced body weight, elevated meta-
bolic rate and resistance to effects of high-fat diet 
[255,256]. FIH is important in several cancer types, for 
example, FIH expression is regulated by miRNA-31 
in head and neck squamous cell carcinoma [257]. Low 
nuclear expression of FIH is a prognostic factor for 
poor overall survival in clear cell renal cell carcinoma 
[258]. Inhibition of FIH-1 in cell cultures of cell renal 
cell carcinoma decreases cells expansion and increases 
apoptosis by regulating HIFα [259]. Overexpression of 
FIH and PHD HIF hydroxylases in non-small-cell 
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lung cancer is indicative of a poor prognosis [260]. FIH 
is also expressed in invasive breast carcinomas [261], 
and is found to be inhibited by gankyrin, an oncopro-
tein expressed in hepatocellular carcinomas, causing 
an increased HIF and VEGF expression resulting in 
hemangioma [262].

More recently, it has been demonstrated that FIH 
can also modify asparagine, aspartate and histidine 
residues in ankyrin repeat proteins such as NF-κB or 
Notch [48–50] indicating hydroxylation of amino acid 
residues as a widespread function that awaits further 
investigations.

MINA53 is closely linked to expression of the tran-
scription factor c-Myc [263], a gene associated with cell 
growth, proliferation, loss of differentiation and apop-
tosis [264]. MINA53 has been reported to demethylate 
H3K9me3 [265], but this activity is controversial since a 
lack of demethylase activity has been reported by sev-
eral groups. More recently it was shown that MINA53 
catalyses histidyl hydroxylation of ribosomal protein 
L27a, suggesting a function in ribosomal assembly 
and function [39]. A series of papers have confirmed 
MINA53 effects on cell differentiation, and overex-
pression of MINA53 in various cancers appears to be 
linked to oncogenesis [266–273]. The role of MINA53 
has been especially well characterized in lung cancer, 
making it a potential prognostic biomarker for the dis-
ease [270,273]. MINA53 expression was also found to be 
induced by silica particles [273], and the protein plays a 
key regulatory role in immunity, for example, in aller-
gen-induced inflammatory response [274] and, impor-
tantly, in differentiation of proinflammatory TH17 
cells [275]. Taken together these studies conclude that 
MINA53 is an important regulator in inflammation 
and oncology, however the mechanistic link between 
its enzymatic activity and those cellular phenotypes 
awaits clarification.

The closely related oxygenase NO66 (also known as 
MAPJD) was first identified and characterized in 2004 
by Eilbracht et al. in purified nucleoli from Xenopus 
laevis oocytes [276]. NO66 shows significant sequence 
homology to MINA53 (34% sequence identity) and is 
reported to demethylate H3K4 and H3K36 [40], and 
similar to MINA53, to catalyse ribosomal histidi-
nyl hydroxylation, in this case on ribosomal protein 
L8 [39]. During mouse embryonic stem cell differen-
tiation NO66 is recruited by PHF19, a component 
of the Polycomb repressive complex PRC2, to stem 
cell genes resulting in loss of H3K36me3, transcrip-
tional silencing and PRC2-dependent methylation of 
H3K27 [277]. NO66 regulates osteoblast differentia-
tion and bone formation by inhibiting Osterix (Osx) 
[40], a key transcription factor essential at later stages 
of bone development, accordingly Osx-null mice have 

a normal cartilage development, but lack bone forma-
tion. Conversely, knockdown of NO66 in differentiat-
ing osteoblasts derived from mesenchymal stem cells 
causes accelerated differentiation and mineralization 
of osteoblasts [40]. The interaction between NO66 and 
Osx was recently mapped to a conserved hinge domain, 
that links the N-terminal JmjC domain and C-termi-
nal wHTH domain of NO66 (Table 1) [278]. The pro-
tein is overexpressed in non-small-cell lung cancer, and 
postulated to be a potential drug target [279].

JmjD4 is a poorly characterized oxygenase whose 
enzymatic activity has not been characterized, and 
shows approximately 30% sequence similarity to 
JmjD6. JmjD5 (also classified as KDM8) plays a criti-
cal role in the regulation of cell cycle by inhibition of 
HDAC recruitment and by activating the cyclin A1 
locus, postulated through demethylation of histone 
H3K36me2 [42], although this activity needs further 
investigation. Instead, a hydroxylase activity of JmjD5 
appears to control the half-life of transcriptional regu-
lators such as NFATc1 through promotion of E3-ligase 
association and proteasomal degradation of the tran-
scription factor [43]. JmjD5 deficiency results in a short-
period circadian phenotype both in mammalian cell 
cultures and Arabidopsis plants [280]. JmjD5 is widely 
overexpressed in several types of tumors (e.g., in leuke-
mia and breast cancer [281]) and a knockout in a MCF7 
breast cancer cell line resulted in reduced proliferation 
[42], and its function appears to be interrelated with 
the tumor suppressor p53. Ablation of murine JmjD5 
causes severe growth retardation and ends in embry-
onic lethality [281,282].

JmjD6, initially characterized as phosphatidyl ser-
ine receptor [283], a function that together with its pos-
tulated methyl arginine demethylase activity [44] has 
not yet been confirmed, catalyzes the hydroxylation 
on the carbon side-chain of lysyl residues located in 
arginine–serine rich regions of, for example, splicing 
factors [45,284] or might modify single-stranded RNA 
[285], indicating involvement in RNA modification and 
function. In mice, the gene is indispensable for normal 
development of many tissues such as brain, eyes, lung, 
kidney, liver and intestine at different stages of embryo-
genesis [286–288]. Furthermore, JmjD6 plays an impor-
tant role during heart development since ablation of its 
function is associated with complex cardiopulmonary 
malformations that resemble the human congenital 
heart syndrome tetralogy of Fallot [289]. Overexpres-
sion of JmjD6 protein has now been strongly linked to 
poor prognosis in breast cancer [290] and in lung adeno-
carcinoma [92]. JmjD7 is a poorly characterized enzyme 
located on chromosome 15; a fusion with phospholi-
pase represents a novel isoform of this lipid metaboliz-
ing enzyme [291]. JmjD8 is linked to cell proliferation 
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and cancer but its enzymatic and cellular functions 
remain unknown. JmjD8 siRNA knockdown in 
SCC23/MET cells, a cellular model for squamous cell 
carcinoma, inhibited invasion of the cells by 80%, sug-
gesting an inhibitory effect on cell proliferation [292]. 
The rat ortholog of human HSPBAP1 (named PASS1) 
was identified in 2000 by Liu et al., associated with the 
heat shock protein hsp27 [293]. PASS1 is expressed in 
various tissues, but shows high expression in the testis 
and kidney, whereas human HSPBAP1 is abundant 
in the thymus and pancreas, as indicated by reverse 
transcription-PCR analysis [294]. HSPBAP1 inhibits 
the function of hsp27, which has been shown to be 
neuroprotective in animal models of motor neuron 
disease and peripheral nerve injury [295,296]. HSPBAP1 
is expressed in neuronal and glial cells in the tempo-
ral lobe of patients with IE, with no brain expression 
in control tissues [296]. A follow-up study tested sam-
ples from the temporal neocortex taken from intrac-
table epilepsy patients showing significant expression 
of HSPBAP gene over the controls [297], however the 
enzymatic role of HSPBAP1 remains unclear. TYW5 
acts as a tRNA hydroxylase and at present a biological 
function has not been reported [52].

Nucleotide hydroxylases
The distantly related group of nucleotide hydroxy-
lases comprises, in humans, the ALKBH members 
(ALKBH 1–8) and the TET 1–3 and FTO enzymes 
(see Figure  1). Despite low sequence identities they 
share the conserved sequence and structural elements 
found within the 2-OG oxygenase family (Figure 2). 
ALKBH enzymes were initially identified as mam-
malian orthologs of the E.  coli AlkB DNA repair 
enzyme [53], important in the adaptive repair response 
to alkylated DNA residues such as 1-methyladenosine 
and 3-methylcytosine in single-stranded DNA [53,54]. 
However, more recent investigations have demon-
strated that their physiological role in humans extends 
well beyond DNA damage repair (see below).

ALKBH 1–3 have been studied extensively and 
their role in DNA and RNA damage repair has been 
established [54,298–303]. Although they display distinct 
but overlapping subcellular distribution and substrate 
specificities, they are critically involved in various 
types of cancer and indicative of cancer drug responses 
[304–311]. Human ALKBH4 supposedly interacts with 
chromatin-binding proteins such as the histone acet-
yltransferase p300 [312], however, no enzymatic func-
tion with nucleotide substrates has been demonstrated 
yet. Recently, it was found that demethylation of a 
monomethylated lysine residue in actin by ALKBH4 
regulates actin–myosin interactions, of importance in 
cytokinesis and cell migration [55].

The landmark discoveries of two Jmj members as 
RNA demethylases have opened new avenues in under-
standing the relationships between RNA metabolism, 
gene regulation and human physiology and disease 
[313,314]. Initially found in FTO [315] and later extended 
to ALKBH5 [56], demethylation of N6-methyladenosine 
(m6A) residues found in several types of RNA species 
was identified, with a reaction sequence analogous to 
Nε demethylation of lysine residues [313]. The discov-
ery of reversible methylation of m6A, a prevalent methyl 
modification found in mRNA and noncoding RNA, 
the effects of chemical inhibition of RNA methylation 
on transcription, processing, translation and the analysis 
of animal or clinical phenotypes therefore suggest a fun-
damental role of m6A demethylation in human physi-
ology [313,314]. The critical role of these enzymes was 
already suggested by the identification of FTO variants 
as risk alleles for BMI and obesity [316]. Subsequently, 
the in vitro activity as demethylase for 3-methylthymine 
and 3-methyluracil found in single-stranded DNA and 
RNA was established, indicating the distant relation-
ship with the ALKBH-type nucleotide hydroxylases 
[60,61]. Although the subject of in vivo activity is still 
a matter of debate, data indicate that m6A is a physi-
ological substrate of FTO, as evidenced from knock-
down studies [315]. The role of FTO in maintenance and 
regulation of energy homeostasis and food intake has 
been demonstrated in animal models [317] and through 
GWAS relationships to insulin resistance and obesity 
[318,319], Alzheimer’s disease [320], cardiovascular disease 
[321] and renal failure [322], as well as breast and colorectal 
cancer [323,324] have been established. A loss-of-function 
homozygous mutation in the FTO gene shows a defect 
in normal brain and cardiac development [325], in line 
with previous observations in animal studies.

Other currently uncharacterized members of the 
ALKBH subfamily comprise members ALKBH6 and 
7. Human ALKBH8 has been recently identified as a 
methyltransferase acting upon 5-carboxymethyl-uri-
dine and catalyzes an important step in tRNA synthe-
sis, is involved in survival after DNA damage [57], and 
may contribute to cancer progression [326].

The subgroup of TET enzymes (Figure 1) was named 
after the ten-eleven translocation (t10;11)(q22;q23) 
found in rare cases of acute myeloid and lymphocytic 
leukemias [327,328]. The translocation fuses the mixed-
lineage leukemia (MLL) gene on chromosome 10 with 
the TET1 gene on chromosome 11. Subsequently the 
relationship to the 2-OG family and the activity as 
hydroxylases of 5-methylcytosine with the consecu-
tive formation of 5-hydroxymethylcytosine, 5-form-
ylcytosine and 5-carboxycytosine was established in a 
series of elegant studies [58,59]. Identification of TET 
enzymes as 2-OG members was a challenging task, due 
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to the large insertions found with the catalytic domains 
(Table 1) [58], that made correct assignment challeng-
ing. Oxidized methylcytosine marks are found at pro-
moters, enhancers and gene bodies, depending on the 
tissue examined. The chemical modification sequence 
of oxidation of methylcytosine forms the basis for an 
enzymatic mechanism to remove the DNA methylcy-
tosine modification, shown to be critical for epigenetic 
regulation of gene transcription. Several mechanisms 
of methylcytosine demethylation might apply, includ-
ing passive demethylation during cell division, or active 
enzymatic mechanisms acting on the oxidized inter-
mediates. The TET-modified cytosine residues can be 
actively removed through a base-excision mechanism 
using DNA glycosylases, or might involve activation-
induced cytidine deaminase (AID) and APOBEC con-
stituting a deamination reaction of 5-hydroxymethylcy-
tosine to 5-hydroxyuracil, followed by glycosylase and 
cytosine replacement. Other mechanisms might involve 
enzymatic decarboxylation by a yet unidentified decar-
boxylase, or dehydroxy-methylation by DNA methyl-
transferases [329]. The importance of the TET enzymes 
in stem cell biology and development (summarized in 
[329]) is at present not completely understood, however, 
especially in myeloproliferative types of cancers, their 
critical roles have been now established [327,328,330].

Conclusion & future perspective
Over the last decade we have witnessed significant 
progress in understanding the function that many 
members of the Jmj family have in human physiology 
and disease. This advancement went hand-in-hand 
with technological improvements in, for example, 
allowing interrogation of epigenomic changes at single 
base-pair resolution, providing unprecedented details 
and mechanisms how chromatin marks sculpt and 
regulate cellular phenotypes and features such as pro-
liferation, differentiation, metabolism and genomic 
stability, among others. Undoubtedly, the discovery of 
hydroxylation as a mechanism to revert N-methylation 
found in nucleic acids or proteins is a milestone that 
has triggered substantial progress in identifying the 
role of this post-translational modification in chro-
matin biology, and defining epigenomic elements in 
genome biology in general.

We have here attempted to summarize the cur-
rent knowledge of human Jmj enzymes with particu-
lar emphasis on histone lysine modification and their 
roles in human disease. It is apparent from this body 
of research literature that the involvement of Nε-methyl 
lysine demethylases in disease is partially related to 
putative functions of the epigenomic elements they 
modify, however, recent data suggest that several his-
tone demethylases bind to a large number of genes, but 

display only modest effects on target gene expression 
when depleted, suggesting a ‘fine-tuning’ effect of these 
enzymes [73]. Moreover, they are often found bound to 
chromatin without their substrate mark present, sug-
gesting a ‘guardian’ function to ‘protect’ chromatin 
against aberrant modifications [73]. This indicates that 
the KDM-Jmj hydroxylases are not necessarily involved 
as on–off switches (as found, for example, in the kinase-
phosphatase paradigm of signal transduction), but sup-
port other roles, highlighted by the fact that a scaffold-
ing function is of critical importance in various settings, 
(e.g., as observed for JARID2 or the KDM6 enzymes). 
However, a substantial fraction of the Jmj enzymes 
(Figure 1) remains enigmatic in terms of substrate speci-
ficity or enzymatic activity, calling for further systematic 
screening activities, including non-histone substrates. In 
fact, the discovery of Jmj-mediated oxidation of nucleic 
acids or nonhistone proteins suggests that the substrate 
spectrum is much larger than anticipated. Furthermore, 
there might have been substantial misleads in identify-
ing substrate specificities by employing inappropriate 
assays, so it appears mandatory to stringently evaluate 
those biochemical parameters to deduce cellular func-
tions. Laudable efforts to map the cellular ‘lysine-meth-
ylome’ [332] have recently demonstrated that nuclear 
lysine methylation constitutes approximately 40% of 
cellular Nε-lysine methylation, including transcription 
factors and chromatin modifiers besides histone pro-
teins, thus providing a wealth of testable novel substrate 
hypotheses for Jmj enzymes.

An important aspect deserving further research 
efforts is to understand the regulation of Jmj enzymes 
themselves. Intriguingly, some of the KDM enzymes 
are inducible by extracellular stimuli (e.g., LPS or 
inflammatory cytokines and growth factors) exem-
plified by JmjD3 or JmjD2D, and post-translational 
modifications or domain arrangements of the enzymes 
have an impact on enzyme activity as seen with PHF2, 
indicating that substrate analyses need evaluation in 
the context of cellular expression and specific growth 
conditions. It is also becoming increasingly clear, 
that regulation of Jmj activity through levels (nor-
moxic vs hypoxic) of the cosubstrate O

2
, or indirectly 

through HIFα-mediated responses, reactive oxygen 
species or metabolic intermediates is of importance 
[154,253,333,334]. Taken together, these research lines 
will undoubtedly reveal novel facets in regulation of 
the epigenetic landscape and its impact on human dis-
ease. However, to evaluate and harness the potential 
of Jmj-enzymes as potential drug targets, chemical 
biology efforts to provide tools for better understand-
ing of biology are mandatory [335]; fortunately recent 
efforts from several laboratories reveal that this class 
of enzymes indeed is chemically tractable, expanding 
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the chemical toolbox of epigenetic inhibitors and possi-
bly allowing to modulate disease outcome by targeting 
Jmj-type oxygenases.
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