We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Decoding mitochondrial–nuclear (epi)genome interactions: the emerging role of ncRNAs

    Julia Nguyen

    Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada

    ,
    Quinn Le

    Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada

    ,
    Phyo W Win

    Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada

    ,
    Kathleen A Hill

    Department of Biology, Western University, London, ON, N6A 3K7, Canada

    ,
    Shiva M Singh

    Department of Biology, Western University, London, ON, N6A 3K7, Canada

    Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada

    &
    Christina A Castellani

    *Author for correspondence:

    E-mail Address: christina.castellani@schulich.uwo.ca

    Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada

    Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada

    Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada

    McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Published Online:https://doi.org/10.2217/epi-2023-0322

    Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.

    Plain language summary

    Communication between the nucleus (the cell control center) and the mitochondria (the energy-producing factories of the cell) is important for keeping cells working properly. Though communication goes both ways, signals sent from the mitochondria to the nucleus have become a big topic of discussion because they have been found to affect disease. ncRNAs are another topic that has been gaining traction. These are RNA transcripts that, instead of coding for proteins, have other roles in controlling our cells. Here we discuss ncRNAs that come from the mitochondria, called mt-ncRNAs. By sending mt-ncRNAs to the nucleus, mitochondria can send messages to the nucleus to help cells adapt to stress or changes in the environment. These mt-ncRNAs demonstrate the importance of mitochondria in controlling our cells. By studying this process, we gain information that helps in treating diseases.

    Tweetable abstract

    The emerging role of mitochondrial-encoded ncRNAs as mediators of the mitochondrial–nuclear signaling pathway, eliciting adaptive nuclear gene expression changes in response to environmental stress.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13(6), 577–591 (2013).
    • 2. Soledad RB, Charles S, Samarjit D. The secret messages between mitochondria and nucleus in muscle cell biology. Arch. Biochem. Biophys. 666, 52–62 (2019).
    • 3. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20(5), 1868–1876 (2000).
    • 4. Fox SN, McMeekin LJ, Savage CH et al. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis. 8(1), 106 (2022).
    • 5. Yang D, Kim J. Mitochondrial retrograde signalling and metabolic alterations in the tumour microenvironment. Cells 8(3), 275 (2019).
    • 6. Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett. 592(5), 663–678 (2018).
    • 7. Butow RA, Avadhani NG. Mitochondrial signaling. Mol. Cell 14(1), 1–15 (2004).
    • 8. Morin AL, Win PW, Lin AZ, Castellani CA. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front. Endocrinol. 13, (2022). • Describes the interplay between the mitochondrion and the nuclear epigenome, highlighting potential pathological consequences.
    • 9. Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced epigenetic modifications: from biology to clinical translation. CPD 27(2), 159–176 (2021).
    • 10. Wang P, Castellani CA, Yao J et al. Epigenome-wide association study of mitochondrial genome copy number. Hum. Mol. Genet. 31(2), 309–319 (2021).
    • 11. Guantes R, Rastrojo A, Neves R, Lima A, Aguado B, Iborra FJ. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 25(5), 633–644 (2015).
    • 12. Castellani CA, Longchamps RJ, Sumpter JA et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med. 12(1), 84 (2020).
    • 13. Kopinski PK, Janssen KA, Schaefer PM et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc. Natl Acad. Sci. USA 116(32), 16028–16035 (2019).
    • 14. Bellizzi D, D'Aquila P, Giordano M, Montesanto A, Passarino G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4(1), 17–27 (2012).
    • 15. Vivian CJ, Brinker AE, Graw S et al. Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Res. 77(22), 6202–6214 (2017).
    • 16. Lee WT, Sun X, Tsai T-S et al. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discov. 3(1), 17062 (2017).
    • 17. Huang J, Wu S, Wang P, Wang G. Non-coding RNA regulated cross-talk between mitochondria and other cellular compartments. Front. Cell Dev. Biol. 9, 688523 (2021).
    • 18. Vendramin R, Marine J, Leucci E. Non-coding RNAs: the dark side of nuclear–mitochondrial communication. EMBO J. 36(9), 1123–1133 (2017).
    • 19. Carden T, Singh B, Mooga V, Bajpai P, Singh KK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J. Biol. Chem. 292(50), 20694–20706 (2017).
    • 20. van der Giezen M, Tovar J. Degenerate mitochondria. EMBO Rep. 6(6), 525–530 (2005).
    • 21. Wallace DC. Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61(1), 1175–1212 (1992).
    • 22. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion 53, 214–223 (2020). • Reviews the association between mitochondrial DNA variation and the onset of disease and overall mortality.
    • 23. Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21(4), e49799 (2020).
    • 24. Duarte-Hospital C, Tête A, Brial F et al. Mitochondrial dysfunction as a hallmark of environmental injury. Cells 11(1), 110 (2021).
    • 25. Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: a common target for genetic mutations and environmental toxicants in Parkinson's disease. Front. Genet. 8, 177 (2017).
    • 26. Rath S, Sharma R, Gupta R et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49(D1), D1541–D1547 (2021).
    • 27. Ruiz-Pesini E, Lott MT, Procaccio V et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 35(Suppl. 1), D823–D828 (2007).
    • 28. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23(2), 147–147 (1999).
    • 29. Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol. 56, 175–181 (2014).
    • 30. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6(5), 389–402 (2005).
    • 31. Ro S, Ma H-Y, Park C et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 23(6), 759–774 (2013).
    • 32. Doda JN, Wright CT, Clayton DA. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl Acad. Sci. USA 78(10), 6116–6120 (1981).
    • 33. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66(1), 409–435 (1997).
    • 34. Mattick JS, Makunin IV. Non-coding RNA. Hum. Mol. Genet. 15(Suppl. 1), R17–R29 (2006).
    • 35. Angrand P-O, Vennin C, Le Bourhis X, Adriaenssens E. The role of long non-coding RNAs in genome formatting and expression. Front. Genet. 6, (2015).
    • 36. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012).
    • 37. Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J. Integr. Bioinform. 16(3), 20190027 (2019).
    • 38. Gusic M, Prokisch H. ncRNAs: new players in mitochondrial health and disease? Front. Genet. 11, 95 (2020).
    • 39. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 15(1), 419 (2014).
    • 40. Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 28(4), 395–404 (2018).
    • 41. Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis. 13(1), 24 (2021).
    • 42. Keam S, Hutvagner G. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life 5(4), 1638–1651 (2015).
    • 43. Mattick JS, Amaral PP, Carninci P et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24(6), 430–447 (2023).
    • 44. Ender C, Meister G. Argonaute proteins at a glance. J. Cell Sci. 123(11), 1819–1823 (2010).
    • 45. Greene J, Baird A-M, Brady L et al. Circular RNAs: biogenesis, function and role in human diseases. Front. Mol. Biosci. 4, 38 (2017).
    • 46. Zhou W-Y, Cai Z-R, Liu J, Wang D-S, Ju H-Q, Xu R-H. Circular RNA: metabolism, functions and interactions with proteins. Mol. Cancer 19(1), 172 (2020).
    • 47. Thai P, Statt S, Chen CH, Liang E, Campbell C, Wu R. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am. J. Respir. Cell Mol. Biol. 49(2), 204–211 (2013).
    • 48. Miguel V, Lamas S, Espinosa-Diez C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol. 37, 101580 (2020).
    • 49. Santarelli L, Gaetani S, Monaco F et al. Four-miRNA signature to identify asbestos-related lung malignancies. Cancer Epidemiol. Biomarkers Prev. 28(1), 119–126 (2019).
    • 50. Sartor GC, St Laurent G, Wahlestedt C. The emerging role of non-coding RNAs in drug addiction. Front. Genet. 3, (2012).
    • 51. Yang Q, Chen Y, Guo R et al. Interaction of ncRNA and epigenetic modifications in gastric cancer: focus on histone modification. Front. Oncol. 11, 822745 (2022).
    • 52. Klinge C. Non-coding RNAs in breast cancer: intracellular and intercellular communication. ncRNA 4(4), 40 (2018).
    • 53. Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long non-coding RNAs in the regulation of gene expression: physiology and disease. ncRNA 5(1), 17 (2019).
    • 54. Zhou S, Jin J, Wang J et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 39(7), 1073–1084 (2018).
    • 55. Kumarswamy R, Bauters C, Volkmann I et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res. 114(10), 1569–1575 (2014).
    • 56. Cao J, Cowan DB, Wang D-Z. tRNA-derived small RNAs and their potential roles in cardiac hypertrophy. Front. Pharmacol. 11, 572941 (2020).
    • 57. Gupta RA, Shah N, Wang KC et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291), 1071–1076 (2010).
    • 58. Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12(12), 861–874 (2011).
    • 59. Delás MJ, Hannon GJ. lncRNAs in development and disease: from functions to mechanisms. Open Biol. 7(7), 170121 (2017).
    • 60. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 19(3), 188–206 (2022).
    • 61. Zhang M, He P, Bian Z. Long noncoding RNAs in neurodegenerative diseases: pathogenesis and potential implications as clinical biomarkers. Front. Mol. Neurosci. 14, 685143 (2021).
    • 62. Salta E, De Strooper B. Noncoding RNAs in neurodegeneration. Nat. Rev. Neurosci. 18(10), 627–640 (2017).
    • 63. Wu Y-Y, Kuo H-C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci. 27(1), 49 (2020).
    • 64. Greene CM. ncRNAs as biomarkers and therapeutic targets for bronchiectasis. Epigenomics 15(15), (.2023).
    • 65. Chi T, Lin J, Wang M, Zhao Y, Liao Z, Wei P. Non-coding RNA as biomarkers for type 2 diabetes development and clinical management. Front. Endocrinol. 12, 630032 (2021).
    • 66. Dehghanbanadaki H, Asili P, Haji Ghadery A et al. Diagnostic accuracy of circular RNA for diabetes mellitus: a systematic review and diagnostic meta-analysis. BMC Med. Genomics 16(1), 48 (2023).
    • 67. Pordzik J, Jakubik D, Jarosz-Popek J et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc. Diabetol. 18(1), 113 (2019).
    • 68. Drury RE, O'Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front. Immunol. 8, 1182 (2017).
    • 69. Tribolet L, Kerr E, Cowled C et al. MicroRNA biomarkers for infectious diseases: from basic research to biosensing. Front. Microbiol. 11, 1197 (2020).
    • 70. Liu W, Ding C. Roles of lncRNAs in viral infections. Front. Cell. Infect. Microbiol. 7, 205 (2017).
    • 71. Rackham O, Shearwood A-MJ, Mercer TR, Davies SMK, Mattick JS, Filipovska A. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17(12), 2085–2093 (2011).
    • 72. Kumar J, Mohammad G, Alka K, Kowluru RA. Mitochondrial genome-encoded long noncoding RNA and mitochondrial stability in diabetic retinopathy. Diabetes 72(4), 520–531 (2023).
    • 73. Gao S, Tian X, Chang H et al. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 38, 41–47 (2018).
    • 74. Duroux-Richard I, Apparailly F, Khoury M. Mitochondrial microRNAs contribute to macrophage immune functions including differentiation, polarization, and activation. Front. Physiol. 12, 738140 (2021).
    • 75. Bandiera S, Rüberg S, Girard M et al. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS ONE 6(6), e20746 (2011).
    • 76. Kuthethur R, Shukla V, Mallya S et al. Expression analysis and function of mitochondrial genome-encoded microRNAs. J. Cell Sci. 135(8), jcs258937 (2022). •• Mitochondrial miRNAs associate with AGO2 in the cytoplasm, targeting the nuclear-encoded PPARGC1A gene to reduce mtDNA copy number.
    • 77. Larriba E, Rial E, Del Mazo J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. BMC Genomics 19(1), 634 (2018).
    • 78. Liu X, Wang X, Li J et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci. China Life Sci. 63(10), 1429–1449 (2020).
    • 79. Kim S, Lee K, Choi YS et al. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep. 40(6), 111178 (2022).
    • 80. Dhir A, Dhir S, Borowski LS et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560(7717), 238–242 (2018). •• The efflux of mitochondrial dsRNA into the cytoplasm triggers antiviral signaling pathways via interactions with nuclear-encoded proteins.
    • 81. Maniataki E, Mourelatos Z. Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA 11(6), 849–852 (2005). •• Mitochondrial tRNA-methionine associates with AGO2 in the cytoplasm, suggesting potential roles in modulating nuclear transcript abundance.
    • 82. Zhu X, Xie X, Das H et al. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization. Cell 185(13), 2309–2323.e24 (2022).
    • 83. Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol. 18(12), 2168–2182 (2021).
    • 84. Dong Y, Yoshitomi T, Hu J-F, Cui J. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenetics Chromatin 10(1), 41 (2017).
    • 85. Liu X, Shan G. Mitochondria encoded non-coding RNAs in cell physiology. Front. Cell Dev. Biol. 9, 713729 (2021).
    • 86. Zhao Y, Zhou L, Li H et al. Nuclear-encoded lncRNA MALAT1 epigenetically controls metabolic reprogramming in HCC cells through the mitophagy pathway. Mol. Ther. Nucleic Acids 23, 264–276 (2021).
    • 87. Gong W, Xu J, Wang Y et al. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Sig. Transduct. Target. Ther. 7(1), 40 (2022).
    • 88. Villegas J, Burzio V, Villota C et al. Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res. 35(21), 7336–7347 (2007).
    • 89. Villota C, Campos A, Vidaurre S et al. Expression of mitochondrial non-coding RNAs (ncRNAs) Is modulated by high risk human papillomavirus (HPV) oncogenes. J. Biol. Chem. 287(25), 21303–21315 (2012).
    • 90. Landerer E, Villegas J, Burzio VA et al. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol. 34(4), 297–305 (2011).
    • 91. Burzio VA, Villota C, Villegas J et al. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc. Natl Acad. Sci. USA 106(23), 9430–9434 (2009).
    • 92. Vidaurre S, Fitzpatrick C, Burzio VA et al. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J. Biol. Chem. 289(39), 27182–27198 (2014).
    • 93. Fitzpatrick C, Bendek MF, Briones M et al. Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors. Cell Death Dis. 10(6), 423 (2019). •• Highlights mitochondrial antisense noncoding RNAs inducing apoptosis through the regulation of nuclear-encoded cell cycle progression factors.
    • 94. Lobos-González L, Silva V, Araya M et al. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget 7(36), 58331–58350 (2016).
    • 95. Blumental-Perry A, Jobava R, Bederman I et al. Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics. Commun. Biol. 3(1), 626 (2020). •• Exposure to cigarette smoke elicits a mito-ncR-805-mediated retrograde signaling pathway to initiate adaptive nuclear gene expression changes in mice.
    • 96. Mathuram TL, Townsend DM, Lynch VJ et al. A synthetic small RNA homologous to the D-Loop transcript of mtDNA enhances mitochondrial bioenergetics. Front. Physiol. 13, 772313 (2022).
    • 97. Höck J, Meister G. The Argonaute protein family. Genome Biol. 9(2), 210 (2008).
    • 98. Müller M, Fazi F, Ciaudo C. Argonaute proteins: from structure to function in development and pathological cell fate determination. Front. Cell Dev. Biol. 7, 360 (2020).
    • 99. Huang V, Li L-C. Demystifying the nuclear function of Argonaute proteins. RNA Biol. 11(1), 18–24 (2014).
    • 100. Meseguer S. MicroRNAs and tRNA-derived small fragments: key messengers in nuclear–mitochondrial communication. Front. Mol. Biosci. 8, 643575 (2021).
    • 101. Shen Y, Yu X, Zhu L, Li T, Yan Z, Guo J. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J. Mol. Med. 96(11), 1167–1176 (2018).
    • 102. Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett. 588(23), 4297–4304 (2014).
    • 103. Garcia-Silva MR, Cabrera-Cabrera F, Güida MC, Cayota A. Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes 3(4), 603–614 (2012).
    • 104. Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 24(8), 1093–1105 (2018).
    • 105. Burroughs AM, Ando Y, de Hoon ML et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 8(1), 158–177 (2011).
    • 106. Maute RL, Schneider C, Sumazin P et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl Acad. Sci. USA 110(4), 1404–1409 (2013).
    • 107. Meseguer S, Rubio M-P. mt tRFs, new players in MELAS disease. Front. Physiol. 13, 800171 (2022).
    • 108. Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23(4), 286–301 (2022).
    • 109. Young PG, Attardi G. Characterization of double-stranded RNA from HeLa cell mitochondria. Biochem. Biophys. Res. Commun. 65(4), 1201–1207 (1975).
    • 110. Aloni Y, Attardi G. Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc. Natl Acad. Sci. USA 68(8), 1757–1761 (1971).
    • 111. Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet. 14(10), e1007654 (2018).
    • 112. Kim S, Ku Y, Ku J, Kim Y. Evidence of aberrant immune response by endogenous double-stranded RNAs: attack from within. BioEssays 41(7), 1900023 (2019).
    • 113. Lee J-H, Shim Y-R, Seo W et al. Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through toll-like receptor 3 in alcohol-associated liver injury. Hepatology 72(2), 609–625 (2020).
    • 114. Levin DH, Petryshyn R, London IM. Characterization of double-stranded-RNA-activated kinase that phosphorylates α subunit of eukaryotic initiation factor 2 (eIF-2α) in reticulocyte lysates. Proc. Natl Acad. Sci. USA 77(2), 832–836 (1980).
    • 115. Tam CL, Hofbauer M, Towle CA. Requirement for protein kinase R in interleukin-1α-stimulated effects in cartilage. Biochem. Pharmacol. 74(11), 1636–1641 (2007).
    • 116. Burnett SB, Vaughn LS, Sharma N, Kulkarni R, Patel RC. Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2α signaling leading to a compromised stress response. Neurobiol. Dis. 146, 105135 (2020).
    • 117. Hugon J, Mouton-Liger F, Dumurgier J, Paquet C. PKR involvement in Alzheimer's disease. Alzheimers Res. Ther. 9(1), 83 (2017).
    • 118. Bando Y, Onuki R, Katayama T et al. Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson's disease and Huntington's disease. Neurochem. Int. 46(1), 11–18 (2005).
    • 119. Yan L, Zhang Y, Wang M, Wang L, Zhang W, Ge Z-R. Circulating LIPCAR is a potential biomarker of heart failure in patients post-acute myocardial infarction. Exp. Biol. Med. (Maywood) 246(24), 2589–2594 (2021).
    • 120. Zhang Z, Gao W, Long Q-Q et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep. 7(1), 7491 (2017).
    • 121. de Gonzalo-Calvo D, Kenneweg F, Bang C et al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci. Rep. 6(1), 37354 (2016).
    • 122. Sharma B, John S. Nonalcoholic steatohepatitis (NASH). In: StatPearls. StatPearls Publishing, FL, USA (2023).
    • 123. Yan L, Chen YG. One ring to rule them all: mitochondrial circular RNAs control mitochondrial function. Cell 183(1), 11–13 (2020).
    • 124. Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A et al. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J. Drug Target. 28(7–8), 818–830 (2020).
    • 125. Zhao Q, Liu J, Deng H et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell 183(1), 76–93.e22 (2020).
    • 126. Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14(1), 9–21 (2018).
    • 127. Muntoni F, Wood MJA. Targeting RNA to treat neuromuscular disease. Nat. Rev. Drug Discov. 10(8), 621–637 (2011).
    • 128. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer – an emerging concept. EBioMedicine 12, 34–42 (2016).
    • 129. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9(10), 775–789 (2010).
    • 130. Li M, Ding X, Zhang Y et al. Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis. 11(8), 672 (2020).
    • 131. Zhou T, Kim Y, MacLeod AR. Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics. In: Long Non-Coding RNAs. Feng YZhang L (Eds). Springer New York, NY, USA, 199–213 (2016).
    • 132. Ideue T, Hino K, Kitao S, Yokoi T, Hirose T. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 15(8), 1578–1587 (2009).
    • 133. Egli M, Manoharan M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51(6), 2529–2573 (2023).
    • 134. Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther. 25(5), 1069–1075 (2017).
    • 135. Yamada Y, Akita H, Kamiya H et al. MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta 1778(2), 423–432 (2008).
    • 136. Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 57, 107–115 (2015).
    • 137. Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion 49, 178–188 (2019).
    • 138. Kawamura E, Maruyama M, Abe J et al. Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-Porter. Mol. Ther. Nucleic Acids 20, 687–698 (2020).
    • 139. Yamada Y, Maruyama M, Kita T, Usami S, Kitajiri S, Harashima H. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease's cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion 55, 134–144 (2020).
    • 140. Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids 4, e252 (2015).
    • 141. Mocellin S, Provenzano M. RNA interference: learning gene knock-down from cell physiology. J. Transl. Med. 2(1), 39 (2004).
    • 142. Gao K, Cheng M, Zuo X et al. Active RNA interference in mitochondria. Cell Res. 31(2), 219–228 (2021).
    • 143. Wei Y, Li Z, Xu K et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov. 8(1), 27 (2022).
    • 144. Mok BY, de Moraes MH, Zeng J et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583(7817), 631–637 (2020).
    • 145. Chen X, Liang D, Guo J et al. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov. 8(1), 8 (2022).
    • 146. Guo J, Zhang X, Chen X et al. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov. 7(1), 78 (2021).
    • 147. Qi X, Chen X, Guo J et al. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov. 7(1), 95 (2021).
    • 148. Guo J, Chen X, Liu Z et al. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol. Ther. Nucleic Acids 27, 73–80 (2022).
    • 149. Lim K, Cho S-I, Kim J-S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat. Commun. 13(1), 366 (2022).
    • 150. Cho S-I, Lee S, Mok YG et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185(10), 1764–1776.e12 (2022).
    • 151. Yi Z, Zhang X, Tang W et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. doi: 10.1038/s41587-023-01791-y (.2023) (Online).
    • 152. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 17(12), 865–886 (2018). • Discusses the implications of mitochondrial-focused therapeutics on the treatment of various diseases.