We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenomics may begin to explain in vitro differential response to hypomethylating agents in MMR-D hypermethylated endometrial cancer

    Louis Y El Khoury

    Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Wan Hsin Lin

    Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA

    ,
    James B Smadbeck

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Michael T Barrett

    Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA

    ,
    Dorsay Sadeghian

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Alexa F McCune

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Giannoula Karagouga

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    John C Cheville

    Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Faye R Harris

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Lindsey M Kinsella

    Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA

    ,
    Ryan W Feathers

    Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA

    ,
    Janet L Schafer Klein

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Marina RS Walther-Antonio

    Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Sarah H Johnson

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Alan R Penheiter

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Giuseppe Cucinella

    Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Gabriella Schivardi

    Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Aditya Bhagwate

    Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Mitesh J Borad

    Department of Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA

    ,
    Aaron S Mansfield

    Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Stephen J Murphy

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Andrea Mariani

    Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    George Vasmatzis

    Biomarker Discovery Group, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Panos Z Anastasiadis

    Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA

    ,
    Saravut J Weroha

    Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA

    &
    Alyssa M Larish

    *Author for correspondence:

    E-mail Address: larish.alyssa@mayo.edu

    Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, MN 55905, USA

    Published Online:https://doi.org/10.2217/epi-2023-0026

    This work examines differences in chromatin accessibility, methylation, and response to DNA hypomethylating agents between mismatch repair-deficient and non-mismatch repair-deficient endometrial cancer. Next-generation sequencing of a stage 1B, grade 2 endometrioid endometrial cancer tumor revealed microsatellite instability and a variant of unknown significance in POLE along with global and MLH1 hypermethylation. Inhibition of viability by decitabine in the study and comparison tumors was minimal, as shown by an inhibitory effect of 0 and 17.9, respectively. Conversely, the inhibitory effect of azacitidine on the study tumor was more pronounced, at 72.8 versus 41.2. In vitro, mismatch repair-deficient endometrial cancer with MLH1 hypermethylation respond better to DNA methyltransferase inhibition by azacytidine (DNA/RNA inhibition), than to decitabine (DNA-only inhibition). Additional large studies are needed to substantiate our findings.

    Tweetable abstract

    Epigenomic integration of mismatch repair-deficient hypermethylated endometrial cancer may explain differential invitro response to DNA hypomethylating agents.

    References

    • 1. Xiang M, English DP, Kidd EA. National patterns of care and cancer-specific outcomes of adjuvant treatment in patients with serous and clear cell endometrial carcinoma. Gynecol. Oncol. 152(3), 599–604 (2019).
    • 2. Kandoth C, Schultz N, Cherniack AD et al. Integrated genomic characterization of endometrial carcinoma. Nature 497(7447), 67 (2013).
    • 3. van den Heerik ASVM, Horeweg N, Nout RA et al. PORTEC-4a: international randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer. Int. J. Gynecol. Cancer 30(12), 2002–2007 (2020).
    • 4. de Boer SM, Powell ME, Mileshkin L et al. Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial. Lancet Oncol. 20(9), 1273–1285 (2019).
    • 5. Fiegl H, Gattringer C, Widschwendter A et al. Methylated DNA collected by tampons – a new tool to detect endometrial cancer. Cancer Epidemiol. Biomarkers Prev. 13(5), 882–888 (2004).
    • 6. Multinu F, Chen J, Madison JD et al. Analysis of DNA methylation in endometrial biopsies to predict risk of endometrial cancer. Gynecol. Oncol. 156(3), 682–688 (2020).
    • 7. Sangtani A, Wang C, Weaver A et al. Combining copy number, methylation markers, and mutations as a panel for endometrial cancer detection via intravaginal tampon collection. Gynecol. Oncol. 156(2), 387–392 (2020).
    • 8. Wentzensen N, Bakkum-Gamez JN, Killian JK et al. Discovery and validation of methylation markers for endometrial cancer. Int. J. Cancer 135(8), 1860–1868 (2014).
    • 9. Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin. Epigenetics 13(1), 116 (2021).
    • 10. Farkas SA, Sorbe BG, Nilsson TK. Epigenetic changes as prognostic predictors in endometrial carcinomas. Epigenetics 12(1), 19–26 (2017).
    • 11. Zhou XC, Dowdy SC, Podratz KC, Jiang SW. Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment. Gynecol. Oncol. 107 (1), 143–153 (2007).
    • 12. Tao MH, Freudenheim JL. DNA methylation in endometrial cancer. Epigenetics 5(6), 491–498 (2010).
    • 13. Shameer K, Klee EW, Dalenberg AK, Kullo IJ. Whole exome sequencing implicates an INO80D mutation in a syndrome of aortic hypoplasia, premature atherosclerosis, and arterial stiffness. Circ. Cardiovasc. Genet. 7(5), 607–614 (2014).
    • 14. Kalari KR, Nair AA, Bhavsar JD et al. MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing. BMC Bioinformatics 15(1), 224 (2014).
    • 15. Cunningham SA, Chia N, Jeraldo PR et al. Comparison of whole-genome sequencing methods for analysis of three methicillin-resistant Staphylococcus aureus outbreaks. J. Clin. Microbiol. 55(6), 1946–1953 (2017).
    • 16. Guzman C, D'Orso I. CIPHER: a flexible and extensive workflow platform for integrative next-generation sequencing data analysis and genomic regulatory element prediction. BMC Bioinformatics 18(1), 363 (2017).
    • 17. Zhang Y, Liu T, Meyer CA et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9), R137 (2008).
    • 18. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–842 (2010).
    • 19. Sun Z, Baheti S, Middha S et al. SAAP-RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing. Bioinformatics 28(16), 2180–2181 (2012).
    • 20. Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin. Cancer Res. 11(24), 8564–8569 (2005).
    • 21. Berg M, Nordgaard O, Kørner H et al. Molecular subtypes in stage II–III colon cancer defined by genomic instability: early recurrence-risk associated with a high copy-number variation and loss of RUNX3 and CDKN2A. PLOS ONE 10(4), e0122391 (2015).
    • 22. Kahn RM, Gordhandas S, Maddy BP et al. Universal endometrial cancer tumor typing: how much has immunohistochemistry, microsatellite instability, and MLH1 methylation improved the diagnosis of Lynch syndrome across the population? Cancer 125(18), 3172–3183 (2019).
    • 23. Alves MKS, Ferrasi AC, Lima VP, Ferreira MVP, de Moura Campos Pardini MI, Rabenhorst SHB. Inactivation of COX-2, HMLH1 and CDKN2A gene by promoter methylation in gastric cancer: relationship with histological subtype, tumor location and Helicobacter pylori genotype. Pathobiology 78(5), 266–276 (2011).
    • 24. Usui G, Matsusaka K, Mano Y et al. DNA methylation and genetic aberrations in gastric cancer. Digestion 102(1), 25–32 (2021).
    • 25. Shilpa V, Rahul B, Premalata CS, Pallavi VR, Lakshmi K. Microsatellite instability, promoter methylation and protein expression of the DNA mismatch repair genes in epithelial ovarian cancer. Genomics 104(4), 257–263 (2014).
    • 26. Corces MR, Granja JM, Shams S et al. The chromatin accessibility landscape of primary human cancers. Science 362(6413), eaav1898 (2018).
    • 27. Shi X, Radhakrishnan S, Wen J et al. Association of CNVs with methylation variation. NPJ Genom. Med. 5(1), (2020).
    • 28. Wei AH, Döhner H, Pocock C et al. Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N. Engl. J. Med. 383(26), 2526–2537 (2020).
    • 29. Kommoss S, McConechy MK, Kommoss F et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 29(5), 1180–1188 (2018).
    • 30. Stenzinger A, Allen JD, Maas J et al. Tumor mutational burden standardization initiatives: recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions. Genes Chromosomes Cancer 58(8), 578–588 (2019).