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Aim: DNA methylation has proven to be a remarkably accurate biomarker for human age, allowing the
prediction of chronological age to within a couple of years. Recently, we proposed that the Universal
PaceMaker (UPM), a flexible paradigm for modeling evolution, could be applied to epigenetic aging.
Nevertheless, application to real data was restricted to small datasets for technical limitations. Materials
& methods: We partition the set of variables into to two subsets and optimize the likelihood function on
each set separately. This yields an extremely efficient Conditional Expectation Maximization algorithm,
alternating between the two sets while increasing the overall likelihood. Results: Using the technique,
we could reanalyze datasets of larger magnitude and show significant advantage to the UPM approach.
Conclusion: The UPM more faithfully models epigenetic aging than the time linear approach while methy-
lated sites accelerate and decelerate jointly.
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DNA methylation is a well-studied epigenetic mark that functions to define the states of cells as they undergo
developmental changes [16]. Beyond changes during development, methylation also undergoes systematic changes
in humans as they age [3,11,14,20]. Therefore, DNA methylation serves as a central epigenetic mechanism that helps
define and maintain the state of cells during the entire life cycle [1,2,9]. In order to measure genome-wide levels of
DNA methylation, techniques such as bisulfite sequencing and DNA methylation arrays are used [12].

The first description of a robust epigenetic clock that worked across different tissues was presented by Steve
Horvath [7]. The clock consists of 353 CpG sites, whose weighted sum yields an estimate of chronological age to
within a couple of years. The clock also log transforms the ages if individuals are less than 20 years old, while
keeping those greater than 20 untransformed. The time linearity, at least for adults of age greater than 20 years,
of the Horvath clock makes it the ‘epigenetic parallel’ of the classical evolutionary version of the molecular clock
(MC) [23,22].

In a recent work [18], we have adapted mechanisms from molecular evolution to the process of methylation. Specif-
ically, we have used the Universal PaceMaker (UPM or simply pacemaker – PM) of genome evolution [15,17,19,21]

to allow for rate variability as opposed to the constancy imposed by the MC concept. In the UPM approach, we
assume that all sites are changing linearly with an adjusted time, which is a nonlinear function of the chronological
time. When replacing genes with CpG sites and interpreting UPM rate increases as accelerated aging, the UPM
framework becomes an appealing paradigm to study age-related changes in DNA methylation.

In this work, we propose a conditional expectation maximization (CEM) algorithm [13] that extends the classical
EM algorithm [4] by partitioning the parameter set into several parts when optimizing the likelihood function over
the entire set simultaneously is hard. The choice of partitioning is important as it determines the optimization
algorithm. The partitioning we used here uses two fast optimization algorithms. In the first – the site step – we
use the same parameters as used by the linear (MC) model that leads to a linear algebra solution in [19]. We also
mention a simple, direct solution, relying on the special structure of the UPM (whose details are deferred to a
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separate publication). The latter allows us to bypass the heavy linear algebra step completely, yielding a significant
practical and asymptotic reduction in both time and space. This reduction is complemented by a fast solution to
the second step, the time step, of the CEM. This yields a very fast algorithm that terminates in few iterations of
the EM algorithm.

These improvements enable us to increase substantially the scale of inputs analyzed by the method, allowing us
to infer the structural properties of the framework, such as false positives and negatives. In the part analyzing real
biological data, we revisit our previous results from DNA methylation data coming from human blood [6] that we
previously analyzed in [18]. It allows us to quantify the effective gain provided by the improved algorithm not only
in terms of the quantity of data processed but also in the types of biological insights we are able to generate from the
results. The current analysis achieves improvements in several parameters, but most significantly in the reduction
of the average variance per term in the likelihood function by a factor of almost two. We also analyzed two other
human datasets that have not been analyzed under the UPM framework before. Both datasets are much larger
than the sizes handled before; furthermore, they come from two different tissues as opposed to the single tissue
in [18]. Their analysis under the UPM demonstrated significant improvement in the model t to the data, by tens of
percentages. These results, along with the substantially larger inputs analyzed, both in number of individuals and
methylation sites, strengthen our preliminary observations from our previous pilot work, suggesting that the UPM
framework models epigenetic aging better than the MC, by allowing all sites to accelerate and decelerate jointly,
accounting for nonlinear trends in aging.

Materials & methods
The evolutionary models
In our model, we have m individuals and n methylation sites in a genome (or simply sites). The ages of each
individual form a set t of time periods {tj} corresponding to each individual j’s age. There is additionally a set of
sites si that undergo methylation changes, where the rate of site i is ri. The methylation at sites starts at some initial

level at birth si
0 . Henceforth, we will index sites with i and individuals with j. Therefore, the variables associated

with a site, ri and si
0 are kept in the vectors of size n and the variables associated with individuals, tj are kept in a

vector t of size m.
si,j measures the methylation level at site si in individual j at time tj. Under the MC model (i.e., when rate is

constant over time), we expect: sij = si
0 + ritj. However, we have noise εi,j that is added and therefore the observed

value ŝij is ŝij = si
0 + ritj+ εi,j. Given the input matrix Ŝ = [̂si,j], holding the observed methylation level at site si

of individual j, the goal is to find the maximum likelihood (ML) values for the variables ri and si
0 for 1 ≤i ≤n.

Henceforth, we define a statistical model under which εi,j is assumed to be normally distributed, εi,j ∼ N(0,σ 2).
In [18], we showed that minimizing the following function, denoted residual sum of squares (or RSS), is equivalent
to maximizing the model’s likelihood:

RSS s s rti j i i j
j mi n

  

 ( ( ))ˆ .,

0 2

(Equation 1)

We also showed that there is an efficient and precise linear algebra solution to this problem that we describe in
more detail below.

In contrast to the MC, under the UPM model, sites may arbitrarily and independently of their counterparts in
other individuals, change their rate at any point in life. However, when this happens, all sites of that individual
change their rate proportionally such that the ratio ri/ri ′ is constant between any two sites i, i′ at any individual j
and at all times.

In [18], we showed that this is equivalent to extending individual j’s age by the same proportion of the rate change.
The new age is denoted as the epigenetic age (e-age) in contrast to the chronological age (c-age). Therefore, here
we do not just use the given c-age but estimate the e-age of each individual. Hence, under the UPM we must find

the optimal values of si
0 , ri, and tj (where tj represents a weighted average of the rate changes an individual has

undergone through life). We describe below the solution to this optimization problem. We note that the deviation
between the chronological age and the estimated epigenetic age is an age difference which, when positive, is denoted
as age acceleration and deceleration otherwise.
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To compare between the two models, MC and UPM, we show that under our statistical setting we can use
standard tools as follows. Under the MC model, a constant rate of methylation at each site is assumed. This induces
linearity with time which is the individual’s age. Alternatively, in the competing, relaxed model (UPM), no such
restriction exists, and in turn an ‘epigenetic’ age for each individual is estimated. By this definition, the ML solution
under the relaxed model cannot be worse than the constrained model as the MC is contained, as a special case, in
it. Therefore, in order to compare the approaches, we use the likelihood ratio test (LRT) as explained next.

Likelihood ratio test
The LRT is a statistical test used to compare the goodness of fit of two competing models, one of which (the null
model) is a special case of the other, more general, one. The log of the ratio of the two likelihood scores distributes
as a χ2 statistic and therefore can be used to calculate a p-value. This p-value is used to reject the null model in
the conventional manner. Specifically, let � = L 0/L1 where L0 and L1 are the ML values under the restricted and
the more general models, respectively. Then asymptotically, -2 log(�) will distribute as χ2 with degrees of freedom
equal the number of parameters that are lost (or fixed) under the restricted model.

In our case, it is easy to see that

log( ) log  
nm RSS

RSS

MC

PM2

�
� (Equation 2)

where RSSMC� and RSSPM� are the ML values for RSS under MC and PM, respectively. Hence, we set our χ2

statistic as
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Algorithm
The heart of the technical improvement is a CEM algorithm. We first give a brief overview of the EM algorithm
and then specialize to CEM. The EM algorithm is a statistical, model-based algorithm, designated to optimize a
missing-data function where an efficient solution is not at hand [1]. It operates iteratively in order to reach a local
maximum point. In each iteration, ‘guessed values’ to the hidden variables are assumed. Then, at the expectation
step, with these guessed values all data are completed and expected values to the hidden variables can be computed.
Then, at the maximization step, the expected values become the next variables’ guessed values, and a new iteration
starts. As the expectation step concerns with integrating over all parameter spaces, and such integration can be
computationally costly, the CEM algorithm breaks the parameter set into two subsets, and optimizes separately
each subset [13].

We now provide a description of the main technical result of this work that is a significant improvement of the
previous standard linear algebra solution used in [18]. This component comprises one of the two building blocks of
the high-level CEM algorithm and therefore we describe it first.

Solving the MC model
In order to solve the MC model, we need to minimize the RSS. It can readily be shown that maximizing the
likelihood function L is equivalent to minimizing the RSS. Under the general case, there is no efficient (polynomial
time) solution to this problem, let alone a closed form, and therefore this task is normally done by some numerical
method.

In our case, however, the special structure of the problem allows a more efficient solution. When the residuals are
linear in all unknowns, a solution can be found using linear algebra tools that have a closed-form solution (given
that the columns of the matrix are linearly independent). The goal is to formulate the task in a matrix form as we
show below. Under this formalism, the optimal (ML) solution is given by the vector ̂ as follows:

ˆ ( ) ,  X X X yT T1
(Equation 4)
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n Figure 1. The mn × 2n matrix X that is used in our

closed-form solution to the molecular clock case. Every
row corresponds to a component in the RSS polynomial
and the corresponding entries (ith and i + nth) in that
rows are set to tj and 1, respectively.
RSS: Residual sum of square.

where X is a matrix over the variable’s coefficients in the problem, y is a vector holding the observed values – in our
case the entries of Ŝ, and the RSS equation can be written such that for every row i in X, yi −Xi,jβ j is a component in
the RSS. Recall that for m individuals and n sites, our RSS contains mn components each of which corresponds to

an entry in Ŝ in the form ŝi,j −tjri- si
0 where ŝi,j and tj are input parameters. This leads to the following observation

(stated in [18]):
Observation 5.1 ([18]), let X be a mn × 2n matrix whose kth row corresponds to the (i,j) entry in S, the first n

variables of β are the ri’s and the second n variables are the si
0 ’s, and the im + j entry in y contains si,j (see Figure 1).

Then, if we set the kth row in X all to zero except for tj in the i’th entry of the first half and 1 in i’th entry of the
second half, we obtain the desired system of linear equations (see again illustration for row setting in Figure 1).

The likelihood score is calculated by plugging in the values obtained for ̂ in Equation 4 to the likelihood
function (or alternatively into the RSS).

A standard (algebraic) implementation of Equation 4 is computationally demanding as it requires the multipli-
cation of the huge 2n × nm matrix X, followed by inverting the product matrix, and then another multiplication.
Luckily, the specific matrices handled in our case possess substantial structure that is imposed by the UPM frame-
work. Therefore, by a series of improvements, whose details are fairly involved and beyond the scope of this work,
we can obtain a fast, closed-form solution to Equation 4 that entirely eliminates the heavy linear algebra machinery.
This is done by a series of four steps, each eliminating an algebraic operation applied to an intermediate matrix,
until the result is obtained. The final result is achieved by showing that the vector ̂ from Equation 4 can be
constructed directly without any of these operations. We here provide the outline of this construction.

• Solving the XT X operation: We start with the matrix product XT X. Recall our auxiliary matrix X described in
Figure 1. This matrix is huge as it contains nm rows and 2n 2m entries. However, not only it is very sparse, it
is also very structured. We can, therefore, show that the product XT X matrix of size 2n × 2n, is composed of
four n × n square submatrices, and each of these submatrices is diagonal. This fact is the basis to the reduced
computation along the whole process.

• Inverting the XT X matrix: After we multiply X by itself, by Equation 4 we need to invert the product. Here, we
use identities from linear algebra regarding inverting block submatrices and the fact that all our block submatrices
are diagonal and their values can be computed directly from the input without calculating the matrix product
itself. This yields that the inverted matrix is also composed of four n × n diagonal matrices whose values can be
computed directly from the input.

• Obtaining the (XTX)-1XT matrix: The third step of our derivation is to multiply the matrix (XT X)-1 obtained in
the previous step, with the transpose of the original matrix X. This matrix, although not square anymore, carries
the structure of its two originating matrices and can be described as expanded diagonal matrix where each entry
in the diagonal is duplicated a constant number of times. Moreover, as we did not have to compute its two
originating matrices, we, therefore, need not to compute this matrix as well and can calculate the value of each
entry of it directly from the input vector t holding each individual’s age – ti.
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• Finalizing: After settling the structure of the (XT X)-1XT matrix, the final step is to derive the values of our
variates, the n site rates and the n site starting states. This cannot be done in less than 2 nm operations as this is
the number of our inputs – n states of each of the m individuals. However, the matrix (XT X)-1XT has only m
nonzero entries in each row and moreover, their exact location is known and their value is dependent only on
that location. The latter implies that we do not need to hold the matrix or even some advanced data structure to
keep sparse matrices. Instead, in each row k of (XT X)-1XT we find the entries in y that are affected, we calculate
the value in the matrix (this is determined solely by the indices of that entry) and perform the multiplication
with the corresponding value in y. The above description yields that the result vector ̂ from Equation 4 can
be computed directly without all the heavy linear algebra machinery.

Solving the UPM problem
In the previous part, we have provided a simple solution to the MC problem that does not rely on any linear
algebraic operation. However, for the UPM problem, the least square problem is not linear since the set of times
tj’s also need to be estimated. Hence, the formulation from the step above is invalid and we are doomed to seek
a heuristic solution that will provide a sound result in reasonable time and for nontrivial datasets. In [18], we have
shown a simple algorithm that searches exhaustively the space of times (instead of the entire space of times, rates
and starting states) and finds the optimal rates and starting states for each time set. Due to its limitations, we were
limited to small datasets of at most a hundred individuals and three hundred sites, and much less than that (in sites)
for simulation studies. We now show a CEM [13] algorithm for the same problem where the maximization step is
subdivided into two steps in which at each step the likelihood function is maximized over a subset of the variates
conditional on the values of the rest of the variates. As our set of variates under the UPM formulation is augmented
with the times (individual’s epigenetic ages), it is now composed of the set of sites, starting states, site rates and
times. Hence, in order to arrive at a local optimum point, we partition the set of variates into two: one is the set of
rates and start states, and the other is the set of times. The underlying CEM algorithm optimizes separately each
such set by alternating between two steps: the site step in which the site-specific parameters, rate and starting state,
are optimized, and time step in which individual’s times are optimized. By the definition of the CEM, at every such
step an increase in the likelihood is guaranteed, until a local optimum is reached.

In our specific case, it remains to show how we optimize the likelihood function at each step. Note that one of
the sets of variates is exactly the set, we solved for under the MC formulation – the set of rates and site start states.
For this set, we already have a very fast algorithm as we illustrated above that is provably correct by Equation 4.
However, as opposed to [18] where we had the same partition over the variates, there, not only optimization of the
times was done exhaustively but also once the optimal rates for given times were found, they were ignored in the
subsequent optimization of the times. Here, every set is optimized based on the basis of the other set. This is what
makes the current algorithm so fast.

We now show how maximization is done for the other set of variates – the set of times tj. In the site step when
we optimize the tj ’s, we treat all other variables of the RSS function (Equation 1) as constants. Moreover, as can
be perceived from the RSS, all tjs are mutually independent – they do not appear jointly in any term in the RSS.
That means we can optimize them separately by an expression in the other variables that appear as constants.

The complete CEM–UPM algorithm
For completeness here, we describe the full high-level CEM algorithm that alternates between the two steps, the
time step and the site step as long as an improvement greater than a threshold δCEM is attained. We use RSS(p) to
denote the evaluation of the polynomial RSS with a set of parameters p.

Procedure CEM UPM (Ŝ, δCEM):
1. Toss a random m-dimension vector t;
2. Toss two random n-dimension vectors s 0, r;
3. Let y be a mn-dimension vector holding the entries of Ŝ from top down, left to right (i.e., yim +j ← ŝi,j);
4. (r‘, s′0) ← apply the site step with parameters t and y;
5. t′ ← apply the time step with parameters r‘, s‘0 and y;
6. RSS0 ← RSS(Ŝ, t, s 0, r);
7. RSS1 ← RSS(Ŝ, t′, s‘ 0, r′);
8. if RSS1 – RSS0 > δCEM:
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• (t, s 0, r) ←(t′, s‘0, r‘);
• return to 4.

We conclude by noting that the algorithm in [18] also operates in the two spaces as here – the time space and the
site step. However, as opposed to the CEM UPM above, in [18], optimization was done only in the time space and
the site space was inferred manually by us and hence was hidden from the optimization algorithm. This difference
is principal and was proved crucial in minimizing the hill-climbing steps, and hence for the speed up of the CEM
UPM algorithm.

Implementation
Simulation results

In order to measure the properties of the new algorithms under controlled conditions, we conducted the following
simulation study. We start with an overview elucidating the underlying ideas and goals behind this section. Recall
that the decision whether a UPM is in effect or not is made by refuting the null hypothesis which assumes no
UPM, or in other words, the existence of an MC, which implies time linearity. This decision is made by computing
the LRT and using the χ2 distribution, which returns the cumulative probability for that χ 2. This in turn can be
contrasted to a supplied threshold in order to refute MC or not.

The parameters we vary along the runs are these: the UPM variance that affects the intensity of the UPM and
determines the e-age or equivalently, how much an individual deviates from its c-age, and the noise variance that

is how much each site i of that individual j deviates from its expected methylation state as defined by ŝij = si
0

+ ritj + εi,j. Naturally, the bigger that variance of εi,j, the more noisy is the signal and the harder it is for the
algorithm to detect the UPM (if such indeed exists). We also measure the effect of the number of individuals and
number of sites as these constitute (but each differently) the number of samples we observe from the underlying
generative model. Naturally, we expect the larger the sample size, the better the identification. The focus, however,
is on the effect of each parameter.

The measured quantity is the cumulative probability returned by the χ 2. For the sake of simplicity, we denote it
in the figures depicting this study as a p-value (although this p-value is obtained by subtracting this quantity from
1). While this is not exactly the success rate, it provides more insight to the method’s performance and can easily
be translated to a success rate.

All experiments, simulation and real data, were done on a Mac laptop with a 2.7 GHz Intel Core i5 processor
with 8GB memory.

Our first study is basically the same as was carried out in our previous work [18], however, with the improved
algorithm we are able to conduct experiments of substantially larger scale (500 and 1000 individuals here vs 50
and 100 in [18]). This increase in magnitude allows us to derive conclusions about false-negative and -positive
rates. The graphs depicting our simulation results are found in Figure 2 in the text. The false-negative rate of a
method is defined as the rate at which a method fails to detect an existing event or signal. In our case, we measured
how well the algorithm detects an existing UPM under various conditions. Therefore, in all experiments a UPM
is in effect (although with different magnitudes). As mentioned above, the measured quantity is the cumulative
probability that is returned from the χ2 function (see ‘Materials & methods’ section which describes how this is
computed in this case), which, in turn, can be used to refute the null hypothesis (no UPM) at any desired threshold
(e.g., 0.95, 0.99). The parameters to the model are as follows: the variance of the PM, in other words, how much
the individuals vary their epigenetic age (e-age) from their chronological age (c-age). Specifically, for individual j
with c-age tj, we set its e-age ej as ej = tj + εj where εj ∼ N(0,σ PM) and σ PM is the PM variance. Therefore, the
bigger σ PM, the farther ej from tj and we get a stronger UPM effect.

The noise variance, determining how much each site of an individual deviates from its expected epigenetic state
(see Var[εi,j] in the preliminaries). Finally, as our improvement allows us to increase sample size, we measured the
returned p-value as a function of the number of sites. The intention in this part goes beyond showing more or
less successful identification of the PM (due to high or low p-value, respectively), rather to show how the various
parameters of the system, such as number of sites, the prominence of the UPM, affect the system’s response.

First (see Figure 2A), both the number of sites and the number of individuals are fixed at 1000 for both curves,
but the PM variance (σ PM – the tendency of epigenetic age to vary from MC age) differs. It is shown that under
PM variance 0.15 a very high p-value (practically 1) is returned by the LRT and hence, the UPM is always inferred
by the method, for every site noise Var[εi,j]. For PM variance 0.05, under moderate site noise, we also obtain high
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Figure 2. Human blood data results. (A) Rate acceleration/deceleration under PM versus MC: curve indicates the MC/PM rates,
respectively, at each site in the study. As can be seen, rates generally maintain their original sign under both MC and PM, however, some
sites accelerate and others decelerate. (B) Age acceleration/deceleration under PM versus MC: ages were sorted in ascending sequence.
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p-values, sufficient for accurate PM identification rates as well. Next (see Figure 2B), the effect of site variance
(noise) is examined again, but under two numbers of sites. The PM variance is small in both tests -0.05. It is shown
that under moderate site noise, we obtain high p-values under both number of sites, however, as the noise increases,
we start to see a difference in performance.

Next, rates of false positives, defined here as the returned p-value when no real UPM is in effect, under several
parameter combinations are checked. Recall that the PM signal is merely its variance σ PM that causes individuals
to develop their own rate and deviate from their chronological age. In the previous part, the false-negative rate was
studied and, therefore, PM was always in effect and we checked how well the system detects it. Here, however,
we set σ PM = 0 (i.e., no PM) and test false detection of PM (through the returned p-value). For this purpose, we
had to increase substantially the noise – site variance Var[εi,j] – and it ranges now from 10 to 90 (as opposed to
1–8 before). Such a high noise level may mislead the procedure to infer falsely PM. Graphical representations of
these results are shown in Figure 3. We study three numbers of individuals -10, 50 and 200. In each case, four
numbers of sites are examined and as expected, the larger this number is, the smaller the false positive (FP) rate.
Nevertheless, under tiny and unrealistically small numbers of individuals 10, the FP rate is very high (but again,
with a very strong noise level). However, under reasonable numbers on individuals 200, and in particular 200 sites,
the FP rate decreases to 10% (and again, the model still includes very high noise).

Concluding this part, the two studies above (summarized in Figures 2 & 3), show that when using large enough
numbers of sites and individuals, both the false negarive and FP rates drop to manageable levels, and provide reliable
results.

Reanalysis of human blood data

We now report on our results applying our CEM–UPM algorithm to methylation data from blood previously
reported in [6]. The data were collected using the Illumina 450 K DNA methylation array platform.

The resulting data matrix contains about 450,000 CpG sites measured across 656 human individuals. In order
to limit ourselves to a manageable size, we chose the 1000 sites providing the most signal by exhibiting the largest
variance. We note that we have already analyzed the same dataset in [18], however, on a much smaller sample size
(both number of individuals and sites). This reanalysis enables us to demonstrate the contribution of the algorithmic
improvement provided here.

Result analysis
We applied both models to the human blood sample reported in [6] – the MC via the linear algebra step constrained
to chronological ages, and the UPM via the CEM–UPM algorithm. For MC, we obtained RSSMC = 50769.81,
while for the UPM we obtained RSSUPM = 48918.42. These two results by the LRT formula 3 (see Materials &
methods section) yield χ 2 = 24369.06. As we have additional 656 free variables (the times tj’s), we can calculate
p-value with this as our degree of freedom that is practically 1. Nevertheless, we can use more informative indicators
in order to measure the improvement attained by using much larger samples compared with [18]. While in [18], an
increase in the average log likelihood under the UPM was of 2%, here, the increase in the average log likelihood
under the UPM was of 3.7%, an improvement of almost twice. The improvement in χ2 is from 3517 to 24,369.06
(although here we have significantly more free variables, so the results are not strictly comparable). It is important
to note that while these improvements seem small, they are obtained over many terms (thousands in the previous
approach and more than half a million now), and hence yielding a cumulative probability practically equal to 1 (or
p-value zero).

Next, we analyzed the biological meaning of our new results. The prime output of the algorithm is the RSS that
should be minimized in order to maximize the likelihood of the model. Nevertheless, recall that the procedure, in
addition to the RSS, also estimates new rates and epigenetic ages. While we cannot guarantee that these are the
optimal values (such as those attained at the global ML point), our experiments suggest that these are not very far
from them and some general trends can be inferred. Figure 2A and B depicts two general trends that emerge from
our results. In the left (Figure 2A), we show for each site, the ratio between its MC to PM rate, where the sites are
sorted by that ratio (increasing order). First, we see that apart from very few sites on the left, most of the sites kept
their direction under both models. Most of the sites (568 out of 1000) have increased their rate under UPM, a
result that complies with our age observation as we now describe.

In the right (Figure 2B), we show the ratio between MC (chronological) and PM age, for every individual in the
study. Individuals are ordered by their chronological age. Individual (a point on the x-axis) whose y value is greater
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Figure 3. E-age versus c-age scatter plots. Scatter plots of epigenetic age versus chronological age demonstrating the deviation of each
individual from the linear correlation. (A) The GSE42861 human blood dataset: 1000 most informative sites of 689 individuals. Analysis
provided 19% increase in explanation (decrease in the variance). (B) The GSE78874 human saliva dataset: 3000 most informative sites of
259 individuals. Analysis provided 50% increase in explanation.



Methodology Snir & Pellegrini

than 1 accelerated her/his age and vice versa. Such a presentation allows us to examine the hypothesis of whether a
general trend in the population exists, or epigenetic age acceleration/deceleration is personal and erratic.

The trend we set to test is whether, in general, the rate acceleration is more pronounced at younger versus older
ages, as was suggested by previous studies [7]. The latter implies a monotonic increase in the ratio of MC versus
UPM with respect to age. Figure 2B indeed shows a steady increase from a ratio of around 0.5 to around 1. We
note that due to the strong noise, we cannot point to a strict monotonic increase, however, the trend is evidently
noticed. Moreover, while the same trend was shown in our study in [18], here, it is demonstrated over a much larger
dataset (656 individuals vs 100) and is substantially more steady.

Additional datasets
To further demonstrate the performance of the new algorithm, we applied it to two more human datasets. One
of these two contains even more individuals than the one analyzed before, 689 individuals, and the other has less
individuals – only 259 – but significantly more sites − 3000.

We first applied the CEM UPM algorithm to the blood dataset of 689 individuals [10]. Running time was
2:01 min. The total MC RSS score (error) was 1135.75 versus total UPM RSS of 806.03. This, in turn, yields
a χ 2: 236,274.73 that with degree of freedom (DF) 689 gives a p-value practically 1, refuting outright the MC
hypothesis. The average MC error per term was 0.0406 and the average UPM error per term was 0.0342, yielding
an improvement of 18.7%.

The second dataset was from human saliva [8]. This dataset contains methylation data over 259 individuals with
age ranging from 36 to 88. To demonstrate the power of the method, we took the 3000 sites of this dataset,
maximizing the covariance with age. Running time for this dataset was 09:26 min. Total error under MC was
3695.53 versus 1643.50 under UPM, yielding χ2 of 629,597.05 that with DF 259 gives practically p-value 1 as in
the former datasets. However, here the reduction in noise per term was very dramatic, from 0.0689 under MC to
0.0459 under UPM, an impressive improvement of 50% in the variance.

In Figure 3, we show another interpretation of the results. Here, the graphs are scatter plots of the e-age (y-axis)
versus c-age (x-axis). In Figure 3A, we see the results for the 689 individuals’ blood data and in Figure 3B, for the
259 individuals’ saliva data. These graphs show the deviation of individuals’ e-age from their c-age. While under
MC, we would expect e-age to be linearly correlated with c-age, here in both data we see significant deviations from
any linearity, explaining the difference we observe in the variance for these two additional datasets.

Conclusion & future perspective
In this work, we devised a CEM algorithm to the problem of inferring epigenetic pacemaker that we name CEM–
UPM. The mathematical definition of the problem, as well as a standard algorithm was provided by us in a previous
work, however, the improvements provided here enable us to analyze inputs, both synthetic and biological, of
significantly larger sizes. The improvements rely on speeding up the two maximization steps of the CEM. In the
principal, the site step, the heavy linear algebra machinery is completely replaced by a manual derivation of optimal
values of the model parameters, yielding an asymptotic saving in both run time and space by the major factor of
the number of sites. In the secondary, the time step, the UPM structure allows for linear closed-form solution of
the likelihood function.

These improvements, in turn, lead to conclusions regarding properties of the method such as error rates that
could not have been drawn using the previous algorithm that could analyze substantially smaller inputs. In the
real-data realm, we both reanalyzed the human blood dataset we analyzed in [18], and two new datasets, analyzed for
the first time under the UPM framework. The reanalysis of the human blood allows us to quantify the improvement
achieved by the algorithmic improvement in terms of real data. Specifically, we obtained an increase of almost twice
in the correlation coefficient RSS2 compared with [18] over the same dataset (but averaged over an order of magnitude
more terms in the likelihood function). The two new datasets are of even larger size than the first human blood
dataset. In these, although we have no record of previous analysis under the UPM framework, the improvement
in the variance with respect to MC is very significant (with up to 50% in the second), leaving no doubt about the
existence of a UPM in human aging.

Finally and importantly, the use of advanced tools such as symbolic algebra has value beyond the mere algorithmic
improvements illustrated here, rather it grants a deeper understanding of the internals of the model that cannot
be achieved otherwise. As a future research direction, we seek to further understand the likelihood surface. This
understanding will not only teach us about the degeneracy of this surface with regard to multiple ML points but
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also the relationship between them and what invariants they satisfy. In the biological realm, an immediate goal is
to provide a rigorous analysis of the trends we see in aging – is there a trend in the population toward nonlinear
(i.e., constant) ratio between epigenetic age versus chronological age.

Summary points

• DNA methylation is a well-studied epigenetic mark that functions to define the states of cells as they undergo
developmental changes.

• In order to measure genome-wide levels of DNA methylation, techniques such as bisulfite sequencing and DNA
methylation arrays are used.

• The first description of a robust epigenetic clock that worked across different tissues was presented by Steve
Horvath. The Horvath clock is the epigenetic parallel of the classical evolutionary version of the molecular clock.

• In a recent work, we have adapted mechanisms from molecular evolution to the process of methylation that
allows the relaxation of the rigid Horvath clock.

• Application of the new model to real methylation data was limited both in number of sites and individuals.

• Here, we propose an efficient algorithm allowing analysis of significantly larger inputs.

• We analyze both datasets analyzed before, as well as new datasets.

• Our results show outright that the Universal PaceMaker is a better explanation to the methylation process,
implying non linearity in the aging process.
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