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scan_tcga tools for integrated epigenomic
and transcriptomic analysis of tumor
subgroups

Aim: The Cancer Genome Atlas contains multiple levels of genomic data (mutation,
gene expression, DNA methylation, copy number variation) for 33 cancer types for
almost 11,000 patients. However, a dearth of appropriate software tools makes it
difficult for bench scientists to use these data effectively. Materials & methods: Here,
we present a suite of flexible, fast and command line-based scripts that will allow
retrieval and analysis of DNA methylation (tool: scan_tcga_methylation.awk), mRNA
(tool: scan_tcga_mRNA.awk) and miRNA expression (tool: scan_tcga_miRNAs.awk)
from cancer genome atlas network level 3 data. Results: We demonstrate the utility
of these tools by analyzing DNA methylation and mRNA expression signatures of
60 frequently deregulated cancer genes and also of 30 miRNAs in primary (n = 102)
and metastatic melanoma patients (n = 367). Conclusion: Our analysis illustrates the
validity of the scan_tcga tools and reveals the epigenomic signatures and importance

of identifying smaller patient subgroups with distinct molecular profiles.
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Cancer is a group of complex diseases that
arise from the accumulation of genomic,
epigenomic and trancriptomic changes in
cells [1]. Progressive advances in genomic and
sequencing technologies have enabled the
generation of multiple layers of -omics data
at an unprecedented scale and rate [2] and
have formed the basis of large-scale cancer
genomic projects. As a result, there has been
an explosion of genomic/epigenomic data for
a number of human cancers. The efforts of
international consortia have played a major
role in the acquisition and generation of a
plethora of cancer genome datasets. The Can-
cer Genome Atlas (TCGA) [3.4] is probably
the most comprehensive initiative that has
generated gene mutation, DNA methylation,
mRNA, miRNA, protein and clinical infor-
mation of more than 11,000 patients and
comprising 33 human cancer types. There-
fore, these datasets provide great opportuni-

ties for obtaining a multilayered view of can-
cer genomes and untangling the complexity
of genomic landscapes in human cancers. It
is exciting that these data are now available to
explore cancer genomes at an unprecedented
scale. However, the massive volume, multi-
ple dimensions and varied formats of these
datasets can be overwhelming (5] and they
create substantial challenges for biologists to
analyze, integrate and interpret.

The default gateway to download TCGA
cancer datasets is the Data Portal (6], where
different levels of data (level 1: raw, level 2:
semi processed and level 3: processed data)
can be downloaded. To analyze these data-
sets, appropriate tools and scripts are nec-
essary. Initially, the main focus of cancer
genome projects was to identify somatic
mutations and therefore several tools were
developed (e.g., COSMIC (7], Tumor-
scape [8], IntOGen [9.10] Oncoprint [11]) to
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analyze and provide summary information of somatic
alterations in cancers. However, tools for analyzing
epigenomic and transcriptomic level information are
very limited. Currently, a small number of web-based
tools (such as cBio [11,12], Wanderer [13], canEvolve [14]
Web-TCGA [15] and TCGA compass [16] are available
to access TCGA data for further analysis. However,
these tools have several limitations with regard to flex-
ible and systematic analysis of epigenomic data. These
tools provide an overview and present aggregated data
for a whole cancer type. The major problem with
these web-based tools is the lack of flexibility to ana-
lyze a subgroup of patients. For example, analysis of
metastatic patients or epigenomic analysis of patients
harboring a particular mutation type is not possible
with these tools. Furthermore, the users are restricted
to the analysis options provided in the tools and cus-
tomized downstream analysis is not feasible with
current tools. In addition, many of these web-based
tools are based on curated databases and often it is
not possible to access information recently released by
TCGA. More recently, a new tool TCGAbiolinks that
uses R statistical environment was made available [17],
which will be an useful tool to the community. How-
ever, using all the different modules of the tools still
requires expertise with R programming. Furthermore,
the tool is designed for bulk analysis is less efficient if
only a small number of genes or regions are intended
to be investigated. It is possible to analyze subgroups
in TCGAbiolinks; however, the groups are mainly
predefined and the user has less flexibility in choosing
or making their own subgroups for analysis. Recent
research has elucidated substantial heterogeneity in
tumor genomes and epigenomes [18] and the impor-
tance of investigating cancer subgroups is becom-
ing more evident [19]. Therefore, it is crucial to have
tools and analysis pipelines that allow interrogation of
tumor subgroups at multiple levels.

Here we present a suite of flexible, fast, command
line based tools that allows retrieval and analysis of
DNA methylation (program: scan_tcga_methylation.
awk), mRNA (program: scan_tcga_mRNA.awk) and
miRNA expression (program: scan_tcga_miRNAs.
awk) from TCGA data. Using these tools, it is possible
to analyze TCGA data on simple desktop computers
and obtain raw or processed values for further down-
stream analysis. We demonstrate the utility of these
tools in retrieving meaningful biologically tenable data
by analyzing DNA methylation and mRNA expression
signatures of 60 frequently deregulated cancer genes
and expression of 30 miRNAs in primary and meta-
static melanoma patients. Our analysis reveals distinct
epigenomic signatures in melanoma and provides
evidence for the utility of these tools.

Materials & methods

Obtaining TCGA data

The TCGA data was downloaded using the Data
Matrix interface of the TCGA Data Portal [¢], which
has now been moved to NCI’s Genomic Data Com-
mons [20]. TCGA level 3 datasets were obtained for
both DNA methylation and RNA-Seq. The initial
data matrix page provides easy selection options for
choosing disease type, data type (methylation, expres-
sion, and mutation, among others), batch numbers
(we downloaded all the batches associated with a data
type) and sample preservation (FFPE, frozen or all).
After choosing the described selections, the next page
provides a matrix. All the desired samples were selected
and an archive was built (this button will appear on
top of the matrix). The third page will then require an
email address and all these selected data can be obtained
in compressed form (for faster download). The down-
loaded compressed folder can be unzipped using a com-
mand line script such as: gzip -dc tcgadownload.tar.gz |
tar xvf - or -dc route_to_the_downloaded_directory/
tcgadownload.tar.gz | tar—xvf.

Format of downloaded data

TCGA datasets broadly contain similar types of files
or data structures. The uncompressed data folder will
contain metadata (description of platform details, assay
details, barcode, protocol reference and similar tech-
nical aspects that were used to generate the datasets),
FILE_SAMPLE_MAP (.txt file containing file name
and TCGA barcodes of the samples included in the
datasets), file_manifest (.txt file containing barcode file
name of the samples, center, platform details) and the
level 3 data for a particular experiment (methylation,
expression, among others) in a separate folder.

TCGA barcode description

It is important to understand the barcoding system of
TCGA in order to demultiplex samples for downstream
analysis. A detailed description of a sample barcode is

described in the TCGA website [21].

Obtaining a list of sample barcodes for subsets

of cancer patients

The complete barcode for each patient will differ due to
the different analyte (DNA, RNA, protein), portions
and vials used for analysis. The scripts described here
accept any valid TCGA barcode for particular analysis.
An easy and convenient way to extract the complete
barcode of samples for different experiments is from
the Broad Institute’s GDAC resource [22]. We obtained
the sample barcodes for solid normal tissue, primary
and metastatic tumors for the SKCM dataset (TCGA
data for SKCM) from the following source [23].
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Similarly, just by clicking each hyperlink (browse
samples option) it is possible to obtain sample bar-
codes for normal tissues, primary or metastatic tumors
for each different type of experiment (methylation,
miRSeq and RNA-Seq, among others). This informa-
tion for each desired subgroup is separately copied into
a separate tab delimited text file.

Processing & analysis of DNA methylation data
For analyzing DNA methylation data using the
scan_tcga_methylation.awk program, two input files
were provided (Figure 1). The first one contained
the TCGA barcodes of the group to be analyzed in
a tab delimited text format (e.g., for SKCM primary
tumor  methylation =~ SKCM_meth_barcode_pri-
mary.txt was used, these files are available with
Supplementary data files 1, 2, 3 & 4). The second input
file contained the list of regions to be analyzed (the file
columns are: chromosome, start, end and gene name.
Example input file, meth_inputregions_list.txt can be
found in Supplementary data files 1, 2, 3 & 4). Using
these two input files, scan_tcga_methylation.awk
extracts DNA methylation information for the list of
given regions for a given sample group (primary, meta-
static or any other specified group). The output file is a
large matrix with the first four columns being the same
as the user provided and the other columns are the beta
methylation values of the patients. In cases where mul-
tiple CpG sites are present in the region, mean beta
methylation values of all the CpG sites for that region
are provided as an output. If only one CpG site is to be
investigated then the start and end coordinates should
have a distance of 1 bp. scan_tcga_methylation_awk
also provides an option of extending the input regions
by any length (both upstream and downstream) by
specifying margin and number of base pair to be
extended in the command line. Furthermore, example
test datasets along with scripts could be obtained from
our GitHub repository [24].

Processing & analyzing RNA-SeqV2 data

For this analysis, three input files are needed. The first
file contains TCGA barcodes for the subset of samples
to be analyzed (e.g, SKCM_mRNA_barcode_pri-
mary.txt, barcode files used in this analysis can be
found in Supplementary data files 5, 6, 7 & 8). Barcodes
from these files were used along with the FILE_SAM-
PLE_MAP.txt file (this file comes with TCGA level 3
expression data download) to locate appropriate match-
ing samples in the RNA-Seq data folder. Unlike DNA
methylation data, for RNA-Seq level 3 expression data,
the name of the files (navigate from UNC__Illumi-
naHiSeq_RNASeqV2 to Level_3 to the files for each

sample) does not contain TCGA sample barcodes.

Furthermore, for each sample six different types of files
are provided in TCGA RNASeqV2 datasets. Therefore
this additional step of using FILE_SAMPLE_MAP is
required to locate corresponding files for the user pro-
vided barcode and match against the correct expression
data file to extract relevant information. Second, an
input list of genes is required for which expression will
be measured (file name: mRNA_inputgenes_list.txt in
Supplementary data files 5, 6, 7 & 8). Using these input
files, scan_tcga_mRNAs.awk extracts mRNA expres-
sion information for any given number of barcodes.
scan_tcga_mRNAs.awk is able to extract raw read
counts (i.e., raw_count, second column) and RSEM
scaled estimate of a transcript (i.e., scaled_estimate,
third column) for the input list of genes from .rsem.
genes.results.txt files. Furthermore, the program also
can extract normalized read counts for a gene (normal-
ized_count, second column) from .rsem.genes.normal-
ized_results.txt files. A point to be noted here is that
the scaled transcript or normalized count for a gene
as provided in TCGA level 3 data often contains an
aggregate of counts from multiple different transcripts
for a gene. Therefore, in many cases these values rep-
resent the sum of total expression for a gene but not
expression profiles of individual transcripts. The users
of scan_tcga_mRNAs.awk need to provide the option
(wanted_field switch in the command line) of which
information (or which field of data) is needed from
level 3 data. As the output file is a large matrix with
the first column being the provided gene names and
the other columns being the expression value of the
patients only one type of information can be retrieved
at one time. To return log, of the wanted field log, = 1
can be specified in command line (default is log, = 0.
Detailed documentation and example commands can
be found in in Supplementary data files 5, 6, 7 & 8).
Furthermore, example test datasets along with scripts
could be obtained from our GitHub repository [25].

Processing & analyzing miRNA-Seq data

Analyzing sequencing based miRNA data using scan_
tcga_miRNAs.awk requires two input files. The first
containing the TCGA barcodes of the group to be
analyzed in a tab delimited text format similar to those
of methylation and expression analysis (e.g., SKCM_
miRNA_barcode_primary.txt was used, these files are
available with Supplementary data files 9, 10, 11 & 12.
Second, an input list of miRNAs is required for which
expression will be measured (file name: miRNA_
input_list.txt in Supplementary data files 9, 10, 11 & 12).
By default, scan_tcga_miRNAs.awk provides reads
per million (RPM) values for a miRNA as RPM is
the most accepted analysis unit for miRNA expres-
sion (i.e., mirna.quantification.txt files, third column).
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However, the program provides flexibility of returning
other fields from datafiles and can be specified using the
wanted_field option. To return log, of the wanted field,
log, = 1 can be specified in command line (default is log,
= 0. In TCGA datasets, a constant header is present in
miRNA identifiers and may not be present in the list to
be provided by the user. For example, ‘hsa-let-7b’ will be
found for an input of ‘let-7b” with the default setting of
mirprefix (="hsa-"). If identifiers are not to be prefixed in
this way, mirprefix=""can be used in the command line.
Furthermore, example test datasets along with scripts
could be obtained from our GitHub repository [26].

Downstream analysis

We obtained the matrix file output provided by the
scan_tcga programs described here in text format and
analyzed the data using standard operations and statis-
tical tests in the R Studio environment (version 3.1.1)
using standard R commands. The heatmaps shown are
plotted using heatmap.2 function in R. All the analysis
described here could be performed using publicly avail-
able R packages and scripts and can be obtained from
the authors on request.

Result & discussion

scan_tcga programs for epigenomic analysis of
sub groups within a cancer type

We have developed three independent programs
to investigate DNA methylation, mRNA expres-
sion and miRNA expression in patient subgroups
(e.g., primary, metastatic, patients of particular can-
cer stage, or molecular subgroups of patients identified
independently).

scan_tcga_methylation.awk

For analyzing DNA methylation data for any region
in the genome we developed the scan_tcga_methyla-
tion.awk program, which requires TCGA barcodes for
samples and a list consisting of genomic coordinates of
regions to be analyzed. This program provides meth-
ylation profiles for all the patients in a matrix in text
format for easy investigation and downstream analy-
sis. The region file requires a simple input of chromo-
some, start and end position and gene name (Figure 1).
The program does not use the gene name information
to retrieve methylation as the gene name supplied by
the user could differ based on the annotation used. If
multiple CpG sites are present within a given region,
the scan_tcga_methylation.awk program provides an
average methylation status of a given region. In addi-
tion, it is possible to investigate methylation patterns
of the adjacent regions by specifying a margin in the
command (i.e., how many additional base-pairs to be
analyzed up or downstream).

scan_tcga_mRNA.awk

For mRNA expression, we have developed scan_
tcga_mRNA.awk that uses patient barcodes, a list of
gene names and FILE_SAMPLE_MAP.ext file (from
TCGA level 3 expression data) to provide either raw
read counts or normalized counts for each patient in
matrix format from RNASeqV2 data (Figure 1). For
mRNA expression it is necessary to use the SAMPLE _
MAP file since in TCGA RNA-Seq data, multiple
files are provided for each patient. The map file helps
to locate the barcode, the required file and allows the
desired expression output to be retrieved. The scan_
tcga_mRNA.awk also has the option of providing
log, of the expression values (e.g., normalized count),
which is often required for downstream analysis.

scan_tcga_miRNAs.awk

Similarly, for miRNA analysis we have developed
scan_tcga_miRNAs.awk that returns RPM using a
list of miRNA and respective barcodes (Figure 1). The
program is also able to provide log, of the RPM values.

Implementation, speed & availability

The scripts are written in awk [27], a text processing lan-
guage which is an integral part of all Unix-type operat-
ing systems. These include Linux dialects and MacOS X.
The scripts have been developed and run under MacOS X
10.8-10.10 (Yosemite), but should function identically
in other environments. All input files should have nor-
mal Unix line terminators (\n’). Files originating from
MicroSoft Excel or other sources may need pretreatment
to correct for this (see ‘Materials & methods’ section).
Each of the scan_tcga programs is able to retrieve the full
TCGA barcode (fullheader = 1 option) or a four character
unique patient identification (ID) as the column headers
in the output. Also, for diagnostic purposes, it is pos-
sible to generate a list of any genes and files which are not
found in the scan_tcga programs specifying unseen = 1.
These programs can be used in standard desktop or lap-
top with an UNIX programming environment (e.g., the
Terminal application in MacOS X).

The scan_tcga programs provide fast operation and
data retrieval, for example, mRNA expression profiles
for 102 primary and 358 metastatic patients (60 ana-
lyzed genes) were returned within 6.05 and 21.65 min,
respectively (Table 1). Similarly, expression profiles of 30
miRNA in primary and metastatic patients’ melanoma
were obtained in 0.99 and 3.8 min, respectively. DNA
methylation data for 102 patients (for 60 gene promot-
ers) were obtained in 303.4 min (Table 1). The data
retrieval process for DNA methylation requires addi-
tional steps (such as mapping each CpG sites within
a region and then providing mean methylation for a

region) and therefore, the mRNA and miRNA pro-
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Table 1. Speed of operations of the scan_tcga programs.

Operation

of 60 genes

Retrieved promoter DNA methylation

Retrieved log, of normalized
expression count of 60 genes

Retrieved log, of normalized
expression count of 30 miRNAs

Program
scan_tcga_methylation.awk

scan_tcga_mRNAs.awk

scan_tcga_miRNAs.awk

The configuration of the computer used here is: operating system: MacOS 10.10.6. Dual Quad core Xeon processors, 32 GB RAM. The files were retrieved from our
local storage server to process using scan_tcga program.
CPU: Central processing unit.

Group analyzed CPU time (s)
Normal tissue (n = 2) 728

Primary (n = 102) 18,204
Metastatic (n = 367) 65,336
Normal tissue (n = 1) 3.5

Primary (n = 102) 363
Metastatic n = 367) 1299
Normal tissue (n = 2) 1

Primary (n = 102) 59
Metastatic n = 367) 228

grams are relatively faster than scanning methylation.
Furthermore, we have downloaded the TCGA level 3
data onto a server and accessed these from the server
to generate the results. Storing in local hard disk will
significantly improve the speed of scan_tcga programs.
Large candidate gene analysis (hundreds or thousands
of genes) using scan_tcga programs could be performed
using local desktop computers. However, for obvious
reasons, the run time will increase with a higher num-
ber of genes or patients (as the program is performing
matching tasks for every gene and for every patient
present in the dataset). An alternative option could be
to perform these large operations in a highly configured
computer or server to get the text format output from
scan_tcga tools. These text outputs are relatively much
smaller in size and downstream analysis could be done
on these files without high computing power.

The scan_tcga programs are publicly available as
GitHub repository. Following are the GitHub links for
each of the tools, which consist of the program, detailed
documentation and examples and a test dataset for
repository. We recommend performing trial analysis
with the test dataset and instructions to familiarize
with the commands of the operations:

e scan_tcga_methylation [24];
e scan_tcga_ mRNA [25];
e scan_tcga_miRNA [2¢].

Demonstration of usage

Methylation & mRNA expression analysis of

60 frequently deregulated genes in primary

& metastatic melanoma

To demonstrate the utility of the tools for retrieving
useful biological information, we set out to perform

epigenomic analysis on 61 genes that have been curated
based on the published literature and their involvement
in defining epigenetic machinery and their implication
in cancer. These consisted of genes involved in methyl-
ating machinery (DNA methyl transferase or DNMT
family) demethylating (TET family proteins), the
EMT (epithelial to mesenchymal transition) process
and genes that were previously reported to be frequently
deregulated (genetic mutation and/or aberrant meth-
ylation profiles) in cancer (list of genes used is shown
in Supplementary Table 1). Out of these 61 genes,
MAGEA3 did not contain any analyzable CpGs in the
promoter in TCGA-SKCM 450 K data. Therefore, it
was excluded from the methylation analysis. We car-
ried out analysis of promoter methylation and corre-
sponding mRNA expression profiles for these 60 genes
in primary (102 patients) and metastatic melanoma
(367 patients) from TCGA data for skin cutaneous
melanoma (TCGA-SKCM). Our goal was to analyze
primary and metastatic melanoma as two groups and
identify significant differences between these groups to
demonstrate that biologically tenable results could be
obtained using the suite of tools described in this arti-
cle. We also present data for normal skin tissue from

the TCGA-SKCM project.

DNA methylation landscape of frequently
deregulated genes in melanoma

Gene promoters were defined as regions within -5 kb
to +1 kb from the transcription start site. For the genes
that had multiple transcripts, we determined the pro-
moter region based on the genomic coordinates of
the main expressed transcript. The average promoter
methylation status of normal skin tissue (n = 2), pri-
mary and metastatic melanoma is shown in Figure 2.
Overall, the promoters of these genes were unmeth-
ylated in normal skin tissue as expected. However,
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several genes showed high methylation level in normal
skin tissue. These genes are FZR1, MMP3 and TET3,
TERT, TYR, DCT and SOXI0 (mean methylation
>0.50). However, these observations should be inter-
preted with caution, as only two normal skin tissues
were included.

The primary and metastatic melanoma patients
show relatively more heterogeneous patterns of meth-
ylation (Figure 2) compared with normal skin tissue.
Previously, TNFSFI0D, LOX and COLIA2 were
reported to be highly methylated in melanoma [28.29];
our analysis confirmed promoter hypermethylation
of these genes. PTEN has been reported to be meth-
ylated in ~60% of the melanomas [3031]. We found
promoter hypermethylation of PTEN in a relatively
small proportion of primary and metastatic patients.
Similarly, we found a low level of methylation in the
SYK gene promoter, which was previously reported to
be methylated in 30% of melanomas [29]. Our analy-
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sis also identified hypermethylation in the HOXDI2,
TNFRSF10C, FGFR2 and TERT genes. These results
confirm recent 450 K array methylation analysis (the
same platform as used in TCGA methylation assays)
that reported high levels of promoter methylation in
these genes in melanoma (3233].

Next, we performed differential methylation anal-
ysis between primary and metastatic samples and
identified four genes that were significantly differen-
tially methylated between the two groups (Wilcoxon
Rank test, Bonferroni adjusted p-value < 0.00083).
These genes are CDHI (median methylation = 11.4
and 13.8%, respectively, for primary and meta-
static patients), EZH2, NOTCH and TET3 (Figure 3
& Supplementary Table 2). Metastatic patients showed
significant hypermethylation in all four genes com-
pared with primary. Although statistically different,
the majority of primary and metastatic patients showed
similar levels of methylation in these genes. However,
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Figure 3. Box plots representing DNA methylation profiles of four genes that showed significant differential
methylation between primary and metastatic melanoma patients. Primary patient (n = 99) and metastatic
patients (n = 359). Y-axis represents DNA methylation in 0 (0%) to 1 (100%) scale. Statistical significance was
derived using Wilcoxon Rank test followed by Bonferroni adjustment for multiple test correction at a significance

level of 0.05 (i.e., p-value < 0.00083)
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Figure 5. Box plots representing mRNA expression profiles of five genes that showed significant differential
expression between primary and metastatic melanoma patients. Primary patient (n = 99) and metastatic patients
(n = 359). Y-axis represents log, of the normalized counts for mRNA expression. Statistical significance was derived
using Wilcoxon Rank test followed by Bonferroni adjustment for multiple test correction at a significance level of
0.05. These genes showed a fold difference of 1.5 or higher in their normalized read counts between primary and

metastatic patients.

a small subgroup of patients showed a strikingly dif-
ferent methylation pattern, giving rise to the overall
difference. Principal component analysis (PCA) fur-
ther suggested that overall the methylation patterns
between primary and metastatic patients are similar in
these 60 genes (Supplementary Figure 1).

Gene expression profiles of primary & metastatic
melanoma patients

In TCGA, for RNA-Seq experiments, six files are pro-
vided for each sample. The scan_tcga_ mRNA.awk
program is able to retrieve normalized counts or raw
counts for a gene for any given sample (see methods for
details). For quantification of the mRNA expression
and differential expression analysis, the most relevant

information is the normalized count of expression for
a gene (this is the default output option for scan_tcga_
mRNA.awk). The normalized count of expression for
a gene does not provide expression profiles of individ-
ual transcripts. These values are representative of the
expression of the gene as a whole (i.e., a combination of
different transcripts). The log, normalized expression
level of the analyzed genes for normal skin tissue, pri-
mary and metastatic melanoma are shown in Figure 4
(although MAGEA3 was excluded from methylation
and methylation-mRNA relationship analysis, we
have shown the mRNA expression profile of the gene
in this figure). These data demonstrate mRNA expres-
sion patterns between primary and metastatic mela-
noma patients are more variable than DNA methyla-
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Figure 7. Box plots representing miRNA expression profiles for five miRNAs that showed significant differential
expression between primary and metastatic melanoma patients. Primary patient (n = 99) and metastatic patients
(n = 359). Y-axis represents log, of the RPM. Statistical significance was derived using Wilcoxon rank test followed
by Bonferroni adjustment for multiple test correction. The adjusted p-value was (0.05/30) = 0.00167 (30 is the

number of investigated miRNA).
RPM: Reads per million.

tion patterns between the two groups. PCA confirmed
this observation (Supplementary Figures 1 & 2).

When we performed differential expression analy-
sis, we found 18 genes that showed statistically signifi-
cant difference (adjusted p-value cut off < 0.00082)
between primary and metastatic melanomas
(Supplementary Figure 3, 4 & Supplementary Table 3).
However, when we applied an expression fold differ-
ence cut of 21.5 on these genes, five genes met the cri-
teria. Out of these five genes, RORI, SNAI3, TETI,
TSPANI3 were significantly upregulated in metastatic
compared with primary (Figure 5). Upregulation of
RORI in melanoma was reported recently (34], while
overexpression of TSPANI3 was reported in other
cancers [35] and SINAI3 involved in the EMT process,

however, its role in melanoma is not well documented
yet [36]. Intriguingly, loss of 5-hydroxymethylcytosine
and downregulation of 7E71 in melanoma compared
with nevi was reported as a key feature of melanoma [37].
However, our analysis reveals that in TCGA patients,
TETI is upregulated in tumor progression (i.e., metas-
tasis) contradictory to the previous finding (Figure 5).
MDMP3 showed a striking downregulation in metastatic
tumors (log? of the median read count = 1.15) compared
with primary (log” of the median read count = 6.46).
Matrix metalloproteinases (MMPs) family mediates
gene expression changes and plays a role in modulating
tumor microenvironment during tumor progression [38]
and study of specific genes in this family is an active
area of research. Downregulation of MMP3 expression
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and subsequent suppression of tumor metastasis was
reported in esophageal squamous cell carcinoma [39].
Role of MMP3 in suppressing tumor invasion and
metastasis was also reported in iz vivo model [40].
However, its specific role in the metastatic cascade in
melanoma is not known and our results calls for further
investigation of its function in melanoma. Our results
demonstrate substantial heterogeneity in gene expres-
sion profiles in melanoma. Although overall statisti-
cal significance is reached (due to the high number of
patients analyzed here, improving the power for detect-
ing significant differences) for several genes, a small sub
group of patients demonstrates large differences. This
indicates that within primary or metastatic melanoma
groups there are small subgroups that demonstrate dis-
tinct profiles for certain genes. These results call for
further work to identify small subgroups of patients
(within melanoma primary or metastatic groups) that
demonstrate distinct profiles in certain genes.

Relationship of promoter DNA methylation

& MRNA expression in frequently deregulated
genes in primary & metastatic melanoma

Next, we assessed the link between promoter DNA
methylation and mRNA expression in the analyzed
genes. When we performed an aggregated analysis of
all the genes, we found the overall correlation between
DNA methylation and expression of the associated gene
was negative. This association was stronger for metastatic
tumors (Spearman correlation of tho =-0.17; p-value < 2.2
x 107'¢, Supplementary Figure 5) compared with the pri-
mary tumors (Spearman correlation of rho = -0.122;
p-value < 2.2 x 10", Supplementary Figure 6). This is
in concordance with the general perception that highly
methylated genes are expressed at low levels and there-
fore negatively correlated, and vice versa [41]. Next, we
analyzed relationship of mRNA expression and pro-
moter methylation for individual genes. This analysis
revealed 23 genes that showed significant negative cor-
relation (after multiple test correction using bonferroni
correction at a significance level of 0.05 for the combined
data of primary and metastatic melanoma patients) with
methylation and corresponding mRNA  expression.
These genes are (ranked as from low to high p-values):
FGF2, TNFRSFIOD, CD274 (or PD-LI), TFPI2,
CDHI1, COLIA2, SNAII, ERBB3, TYR, SOXI10, LOX,
VIM, DCT, RASSF1, TSPANI13, SNAI2, CDH2, FZD7,
CDKN2A, TET2, DNMT3B, SYK, TETI. Similar to
the aggregated analysis, we found that even at an indi-
vidual gene level, these negative correlations are stronger
for metastatic melanoma patients compared with the pri-
mary. The correlation analyzes of the individual genes are
presented in Supplementary Table 4 and the relationship
plots are depicted in Supplementary Figures 7, 8 & 9.

However, although this was an overall pattern, sev-
eral genes behaved differently. Surprisingly, we iden-
tified significant positive correlation (i.e., high meth-
ylation in promoters are associated with high mRNA
expression) for five genes (after multiple test correction
using bonferroni correction at a significance level of
0.05 for the combined data of primary and meta-
static melanoma patients). These genes are GATA4
(rtho=0.45; p-value=5.55 x 10*%), HOXD12(rho=0.42;
p-value=6.59 x 10*!), ESRI (rho = 0.36; p-value = 3.84
x 10°°), TWISTI (tho = 0.32, p-value = 3.35 x 10%),
MGMT (tho = 0.28, p-value = 7.99 x 10'%) (Supple-
mentary Figures 7, 8, 9 & Supplementary Table 4). As the
normalized expression level of a gene in TCGA level 3
data could be a combination of several transcripts, we
further investigated whether the expression of these
analyzed transcripts were derived from the methylated
promoters. We were able to confirm that the analyzed
transcript for MGMT (transcript ID: uc001lkh.2),
HOXDI2 (transcript ID: uc010zev.1) and two tran-
scripts for GATA4 (transcript IDs: uc003wuc.2 and
uc011kxc.1) were derived from the methylated pro-
moters in melanoma patients. The report of high pro-
moter methylation and high expression is relatively
very rare in literature and these observations calls for
future research further validate these findings and to
reveal the role of methylated DNA in facilitating the
corresponding transcriptional program.

miRNA profiling of primary & metastatic
melanoma tumors

We developed scan_tcga_miRNAs.awk for compre-
hensive profiling of miRNAs from TCGA data. For
miRNAseq data in TCGA, two types of file are pro-
vided, they are mirna.quantification.txt and isoform.
quantification.txt. scan_tcga_miRNAs.awk extracts
RPM from mirna.quantification.txt files as the default.
However, it is possible to retrieve other information
if desired by specifying wanted_field in the com-
mand line. To demonstrate the utility of the software
we curated a list of 30 miRNAs that were previously
reported to be deregulated in melanoma (see the list of
analyzed miRNAs in Supplementary Table 5) [42]. The
expression levels (log? of RPM) of the analyzed miR-
NAs for normal skin tissue, primary and metastatic
melanomas are shown in Figure 6. The separation of
primary and metastatic patients was more pronounced
in PCA for miRNA than mRNA expression or DNA
methylation profiles (Supplementary Figure 10). We
observed that a group of miRNAs were consistently
expressed either at a high level (e.g., let7a/b, miR-21
and miR-30d, Figure 6) or a low level (e.g., miR-34b,
miR-26a, miR-137, miR-18b). These results are
consistent with previous reports of deregulation of
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these miRNAs in melanoma [43-48]. Furthermore, a
group of miRNA showed distinct expression profiles
between primary and melanoma patients. We iden-
tiied miR-193b, miR-203, miR-200a, miR-200c,
miR-205 expression to be significantly downregu-
lated in metastatic patients compared with primary
(Figure 7 & Supplementary Table 6). Our analysis
confirmed the previous report of miR-193b down-
regulation in metastatic melanoma [(49]. In addition,
downregulation of miR-203, miR-200a, miR-200c,
miR-205 was previously reported in several mela-
noma cell lines [50-52]. Our data reveal that the loss of
expression in these miRNAs occurs predominantly in
metastatic melanomas compared with primary.

Conclusion

We provide a suite of intuitive command line based
tools to analyze different layers of epigenomic data
from TCGA. These programs provide users with flex-
ibility to choose a subgroup of patients, retrieve large
TCGA data and perform comprehensive analysis of the
epigenome. The scan_tcga tools are currently designed
to exclusively interrogate TCGA level 3 data. These
datasets are processed and presented in standard for-
mat. However, for independent additional datasets if
the raw data are processed in similar format to TCGA,
scan_tcga tools could be adopted for analysis of those
files. Expanding the scan_tcga tools for analyzing
other types of datasets with different formats will be a
subject for future developments.

The output files of scan_tcga tools are in an easily
accessible text format and readily usable for bench sci-
entists without bioinformatics knowledge. If advanced
analysis is required, the output files could be directly
read into the R environment for further analysis and

plotting with several publicly available packages. The
matrix format text files generated by scan_tcga tools
are compatible with other tools for analysis. We believe
the scan_tcga tools are complimentary to the existing
R bioconductor based tools such as TCGAbiolinks [17],
TCGA2STAT (53] or RTCGAToolbox [54]. The future
development of scan_tcga will include options for
retrieving multiple fields in one operation and addi-
tional function for statistical tests. We illustrate the
usage of scan_tcga tools by analyzing primary and
metastatic melanoma patients. Our analysis confirms
previous reports of aberrant methylation and expres-
sion patterns of several genes and miRNA. In addition,
the current analysis reveals novel patterns of differen-
tial methylation and differential expression of mRNA
and miRNA between primary and metastatic mela-
noma patients. scan_tcga tools and documentation
are distributed as part of this article and also are freely
accessible at GitHub with relevant test datasets.

Supplementary data

To view the supplementary data that accompany this paper
please visit the journal website at: www.futuremedicine.com/
doi/full/10.2217/epi-2016-0063
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Executive summary

effectively.

data.

GitHub with relevant test datasets.

e The Cancer Genome Atlas contains multiple levels of genomic data. However, lack of computational
methods to investigate subgroups of patients makes it difficult for bench scientists to use these data

e We present three command line based scripts to perform multi-omic analysis of The Cancer Genome Atlas

¢ We have developed scan_tcga_methylation.awk (DNA methylation), scan_tcga_mRNA.awk (for mRNA analysis
from RNA-Seq data) and scan_tcga_miRNAs.awk (for miRNA expression).

e Using these tools we have analyzed 60 frequently deregulated cancer genes in primary and metastatic
melanomas. We identified hypermethylation of CDH1, EZH2, NOTCH and TET3 promoters in metastatic
melanomas compared to primary. For mRNA expression levels, we found ROR1, SNAI3, TET1 and TSPAN13 were
significantly upregulated in metastatic compared to primary, while we identified significant downregulation
of the MMP3 gene in metastatic patients. Although higher promoter methylation was associated with
lower expression generally, we identified significant positive correlation (i.e., high methylation in promoters
associated with high mRNA expression) for five genes.

e Our miRNA analysis revealed that miR-193b, miR-203, miR-200a, miR-200c and miR-205 expression to be
significantly downregulated in metastatic patients compared to primary.

e scan_tcga tools and documentation are distributed as part of this article and are also freely accessible at
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