We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenetic regulation of axonal regenerative capacity

    Yi-Lan Weng

    Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    ,
    Jessica Joseph

    Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    ,
    Ran An

    Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    ,
    Hongjun Song

    Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    &
    Guo-li Ming

    *Author for correspondence:

    E-mail Address: gming1@jhmi.edu

    Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    Published Online:https://doi.org/10.2217/epi-2016-0058

    The intrinsic growth capacity of neurons in the CNS declines during neuronal maturation, while neurons in the adult PNS are capable of regeneration. Injured mature PNS neurons require activation of an array of regeneration-associated genes to regain axonal growth competence. Accumulating evidence indicates a pivotal role of epigenetic mechanisms in transcriptional reprogramming and regulation of neuronal growth ability upon injury. In this review, we summarize the latest findings implicating epigenetic mechanisms, including histone and DNA modifications, in axon regeneration and discuss differential epigenomic configurations between neurons in the adult mammalian CNS and PNS.

    References

    • 1 Goldberg JL, Klassen MP, Hua Y, Barres BA. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296(5574), 1860–1864 (2002).
    • 2 Blackmore M, Letourneau PC. Changes within maturing neurons limit axonal regeneration in the developing spinal cord. J. Neurobiol. 66(4), 348–360 (2006).
    • 3 Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J. Neurosci. 17(10), 3710–3726 (1997).
    • 4 Chen DF, Jhaveri S, Schneider GE. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc. Natl Acad. Sci. USA 92(16), 7287–7291 (1995).
    • 5 Wang JT, Kunzevitzky NJ, Dugas JC, Cameron M, Barres BA, Goldberg JL. Disease gene candidates revealed by expression profiling of retinal ganglion cell development. J. Neurosci. 27(32), 8593–8603 (2007).
    • 6 Moore DL, Blackmore MG, Hu Y et al. KLF family members regulate intrinsic axon regeneration ability. Science 326(5950), 298–301 (2009).
    • 7 Blackmore MG, Wang Z, Lerch JK et al. Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc. Natl Acad. Sci. USA 109(19), 7517–7522 (2012).
    • 8 Perera A, Eisen D, Wagner M et al. TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep. 11(2), 283–294 (2015).
    • 9 Gaub P, Joshi Y, Wuttke A et al. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134, 2134–2148 (2011).
    • 10 Rao RC, Tchedre KT, Malik MT et al. Dynamic patterns of histone lysine methylation in the developing retina. Invest. Ophthalmol. Vis. Sci. 51(12), 6784–6792 (2010).
    • 11 Biermann J, Grieshaber P, Goebel U et al. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 51(1), 526–534 (2010).
    • 12 Ma TC, Willis DE. What makes a RAG regeneration associated? Front. Mol. Neurosci. 8, 43 (2015).
    • 13 Smith DS, Skene JH. A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J. Neurosci. 17(2), 646–658 (1997).
    • 14 Chandran V, Coppola G, Nawabi H et al. A systems-level analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron 89(5), 956–970 (2016).
    • 15 Stam FJ, MacGillavry HD, Armstrong NJ et al. Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur. J. Neurosci. 25(12), 3629–3637 (2007).
    • 16 Storer PD, Dolbeare D, Houle JD. Treatment of chronically injured spinal cord with neurotrophic factors stimulates β-II-tubulin and GAP-43 expression in rubrospinal tract neurons. J. Neurosci. Res. 74(4), 502–511 (2003).
    • 17 Bomze HM, Bulsara KR, Iskandar BJ, Caroni P, Skene JH. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat. Neurosci. 4(1), 38–43 (2001).
    • 18 Pernet V, Joly S, Jordi N et al. Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death Dis. 4, e734 (2013).
    • 19 Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics 10(4), 771–781 (2013).
    • 20 Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 21(3), 381–395 (2011).
    • 21 Peixoto L, Abel T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38(1), 62–76 (2013).
    • 22 Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol. 8(4), 284–295 (2007).
    • 23 Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10(1), 32–42 (2009).
    • 24 Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci. 31(1), 47–58 (2007).
    • 25 Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 17(9), 1392–1408 (2010).
    • 26 Chen J, Laramore C, Shifman MI. Differential expression of HDACs and KATs in high and low regeneration capacity neurons during spinal cord regeneration. Exp. Neurol. 280, 50–59 (2016).
    • 27 Puttagunta R, Tedeschi A, Soria MG et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527 (2014).
    • 28 Finelli MJ, Wong JK, Zou H. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J. Neurosci. 33(50), 19664–19676 (2013).
    • 29 Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155(4), 894–908 (2013).
    • 30 Cho Y, Cavalli V. HDAC signaling in neuronal development and axon regeneration. Curr. Opin. Neurobiol. 27, 118–126 (2014).
    • 31 Cho Y, Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 31(14), 3063–3078 (2012).
    • 32 Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J. Biol. Chem. 290(37), 22759–22770 (2015).
    • 33 Rivieccio MA, Brochier C, Willis DE et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl Acad. Sci. USA 106(46), 19599–19604 (2009).
    • 34 Abe N, Cavalli V. Nerve injury signaling. Curr. Opin. Neurobiol. 18(3), 276–283 (2008).
    • 35 Teng FY, Tang BL. Axonal regeneration in adult CNS neurons-signaling molecules and pathways. J. Neurochem. 96(6), 1501–1508 (2006).
    • 36 West AE, Griffith EC, Greenberg ME. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3(12), 921–931 (2002).
    • 37 Mar FM, Bonni A, Sousa MM. Cell intrinsic control of axon regeneration. EMBO Rep. 15(3), 254–263 (2014).
    • 38 Schmitt HM, Pelzel HR, Schlamp CL, Nickells RW. Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury. Mol. Neurodegener. 9, 39 (2014).
    • 39 Shin J, Ming GL, Song H. Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nat. Neurosci. 17(11), 1463–1475 (2014).
    • 40 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13(7), 484–492 (2012).
    • 41 Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science 315(5815), 1141–1143 (2007).
    • 42 Shukla S, Kavak E, Gregory M et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479(7371), 74–79 (2011).
    • 43 Weng YL, An R, Shin J, Song H, Ming GL. DNA modifications and neurological disorders. Neurotherapeutics 10(4), 556–567 (2013).
    • 44 Guo JU, Su Y, Shin JH et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17(2), 215–222 (2014).
    • 45 Laplant Q, Vialou V, Covington HE 3rd et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13(9), 1137–1143 (2010).
    • 46 Pollema-Mays SL, Centeno MV, Apkarian AV, Martina M. Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front. Cell. Neurosci. 8, 217 (2014).
    • 47 Delree P, Leprince P, Schoenen J, Moonen G. Purification and culture of adult rat dorsal root ganglia neurons. J. Neurosci. Res. 23(2), 198–206 (1989).
    • 48 Iskandar BJ, Rizk E, Meier B et al. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J. Clin. Invest. 120(5), 1603–1616 (2010).
    • 49 Ma DK, Guo JU, Ming GL, Song H. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8(10), 1526–1531 (2009).
    • 50 Guo JU, Ma DK, Mo H et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 14(10), 1345–1351 (2011).
    • 51 Ito S, Shen L, Dai Q et al. TET proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047), 1300–1303 (2011).
    • 52 Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929), 930–935 (2009).
    • 53 He YF, Li BZ, Li Z et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047), 1303–1307 (2011).
    • 54 Yu H, Su Y, Shin J et al. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat. Neurosci. 18(6), 836–843 (2015).
    • 55 Rudenko A, Dawlaty MM, Seo J et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79(6), 1109–1122 (2013).
    • 56 Zhang RR, Cui QY, Murai K et al. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13(2), 237–245 (2013).
    • 57 Li T, Yang D, Li J, Tang Y, Yang J, Le W. Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol. Neurobiol. 51(1), 142–154 (2015).
    • 58 Papale LA, Zhang Q, Li S, Chen K, Keles S, Alisch RS. Genome-wide disruption of 5-hydroxymethylcytosine in a mouse model of autism. Hum. Mol. Genet. 24(24), 7121–7131 (2015).
    • 59 Hahn MA, Qiu R, Wu X et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep. 3(2), 291–300 (2013).
    • 60 Xu Y, Xu C, Kato A et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151(6), 1200–1213 (2012).
    • 61 Szulwach KE, Li X, Li Y et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14(12), 1607–1616 (2011).
    • 62 Wu H, D’Alessio AC, Ito S et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25(7), 679–684 (2011).
    • 63 Endres M, Meisel A, Biniszkiewicz D et al. DNA methyltransferase contributes to delayed ischemic brain injury. J. Neurosci. 20(9), 3175–3181 (2000).
    • 64 Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci. 31(46), 16619–16636 (2011).
    • 65 Petell CJ, Alabdi L, He M, San MP, Rose R, Gowher H. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res. doi:10.1093/nar/gkw426 (2016) (Epub ahead of print).
    • 66 Nakamura T, Liu YJ, Nakashima H et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486(7403), 415–419 (2012).
    • 67 Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839(12), 1362–1372 (2014).
    • 68 Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 35(5), 325–334 (2012).
    • 69 Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13(8), 622–638 (2014).
    • 70 Liu CM, Wang RY, Saijilafu, Jiao ZX, Zhang BY, Zhou FQ. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev. 27(13), 1473–1483 (2013).
    • 71 Lv L, Han X, Sun Y, Wang X, Dong Q. Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro. Exp. Neurol. 233(2), 783–790 (2012).
    • 72 Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS ONE 6(8), e23423 (2011).
    • 73 Han F, Huo Y, Huang CJ, Chen CL, Ye J. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res. 1611, 65–73 (2015).
    • 74 Jiang JJ, Liu CM, Zhang BY et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3beta expression. Cell Death Dis. 6, e1865 (2015).
    • 75 Lu XC, Zheng JY, Tang LJ et al. MiR-133b Promotes neurite outgrowth by targeting RhoA expression. Cell Physiol. Biochem. 35(1), 246–258 (2015).
    • 76 Hu YW, Jiang JJ, Yan G, Wang RY, Tu GJ. MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro. Neurosci. Lett. 622 61–66 (2016).
    • 77 Zhou S, Shen D, Wang Y et al. MicroRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS ONE 7(9), e44768 (2012).
    • 78 Wu D, Murashov AK. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front. Mol. Neurosci. 6, 35 (2013).
    • 79 Zeng L, He X, Wang Y et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 21(1), 37–43 (2014).
    • 80 Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526(7574), 591–594 (2015).
    • 81 Li S, Wang X, Gu Y et al. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol. Ther. 23(3), 423–433 (2015).
    • 82 Ma DK, Jang MH, Guo JU et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323(5917), 1074–1077 (2009).
    • 83 Hilton IB, D’Ippolito AM, Vockley CM et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33(5), 510–517 (2015).
    • 84 Painter MW, Brosius Lutz A, Cheng YC et al. Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron 83(2), 331–343 (2014).
    • 85 Varela-Rey M, Iruarrizaga-Lejarreta M, Lozano JJ et al. S-adenosylmethionine levels regulate the schwann cell DNA methylome. Neuron 81(5), 1024–1039 (2014).
    • 86 Hung HA, Sun G, Keles S, Svaren J. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J. Biol. Chem. 290(11), 6937–6950 (2015).
    • 87 Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat. Rev. Genet. 15(5), 293–306 (2014).
    • 88 Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397), 201–206 (2012).