We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Blood-based novel biomarkers for nonalcoholic steatohepatitis

    Yun Qiu

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    ,
    Sufan Wang

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    ,
    Ting Wan

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    ,
    Mingtong Ye

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    ,
    Rui Jiang

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    ,
    Lei Pei

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    &
    Lili Yang

    *Author for correspondence: Tel.: +86 20 87330625; Fax: +86 20 87330625;

    E-mail Address: yangll7@mail.sysu.edu.cn

    Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China

    Guangdong Provincial Key Laboratory of Food, Nutrition & Health, Guangzhou, Guangdong 510080, PR China

    Published Online:https://doi.org/10.2217/bmm-2017-0361

    Nonalcoholic fatty liver disease has become a social health challenge of global concern. The term nonalcoholic steatohepatitis (NASH) is a more severe condition than simple steatosis and distinguishing NASH from nonalcoholic fatty liver disease is particularly important. Liver biopsy remains a gold standard in diagnosing NASH. Meanwhile, radiological techniques such as ultrasonography and MRI are also applied widely. However, the invasive and expensive examination is not suitable for screening, and there is a great need for reliable and appropriate biomarkers to screen patients for NASH. Based on the current studies of blood-based novel biomarkers, we attempt to summarize the latest findings on biomarkers for NASH, including blood biomarkers encompassing proteins, lipids and miRNAs; the correlation between extracellular vesicles and NASH; and treatment strategies for NASH.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Rinella ME. Nonalcoholic fatty liver disease. JAMA 313(22), 2263–2273 (2015). • A systematic review illustrates the pathogenesis and prevalence of nonalcoholic steatohepatitis (NASH) and the role of current diagnostics and liver biopsy for NASH.
    • 2 Angulo P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346(16), 1221–1231 (2002).
    • 3 Fassio E, Alvarez E, Domínquez N, Landeira G, Longo C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology 40(4), 820–826 (2004).
    • 4 Adams LA, Lymp JF, St Sauver J et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129(1), 113–121 (2005).
    • 5 Singal AG, Manjunath H, Yopp AC et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am. J. Gastroenterol. 109(3), 325–334 (2014).
    • 6 Zhu L, Baker SS, Gill C et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2), 601–609 (2013).
    • 7 Masarone M, Federico A, Abenavoli L, Loguercio C, Persico M. Non alcoholic fatty liver: epidemiology and natural history. Rev. Recent Clin. Trials 9(3), 126–133 (2014).
    • 8 Hu K. Nonalcoholic fatty liver disease: updates in noninvasive diagnosis and correlation with cardiovascular disease. World J. Gastroenterol. 20(24), 7718 (2014).
    • 9 Vuppalanchi R, Chalasani N. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 49(1), 306–317 (2009).
    • 10 Portillo SP, Bril F, Maximos M et al. High prevalence of nonalcoholic fatty liver disease in patients with Type 2 diabetes mellitus and normal plasma aminotransferase levels. J. Clin. Endocr. Metab. 100(6), 2231–2238 (2015).
    • 11 Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J. Hepatol. 51(3), 433–445 (2009).
    • 12 Spengler EK, Loomba R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin. Proc. 90(9), 1233–1246 (2015).
    • 13 Merriman RB, Ferrell LD, Patti MG et al. Correlation of paired liver biopsies in morbidly obese patients with suspected nonalcoholic fatty liver disease. Hepatology 44(4), 874–880 (2006).
    • 14 Kamada Y, Ono M, Hyogo H et al. A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology 62(5), 1433–1443 (2015).
    • 15 Guha IN, Parkes J, Roderick P et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 47(2), 455–460 (2008).
    • 16 Povero D, Feldstein AE. Novel molecular mechanisms in the development of non-alcoholic steatohepatitis. Diabetes Metab. J. 40(1), 1–11 (2016).
    • 17 Bastati N, Feier D, Wibmer A et al. Noninvasive differentiation of simple steatosis and steatohepatitis by using gadoxetic acid-enhanced MR imaging in patients with nonalcoholic fatty liver disease: a proof-of-concept study1. Radiology 271(3), 739–747 (2014).
    • 18 Sumida Y. Current status and agenda in the diagnosis of nonalcoholic steatohepatitis in Japan. World J. Hepatol. 2(10), 374 (2010).
    • 19 Kwok R, Tse YK, Wong GLH et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease-the role of transient elastography and plasma cytokeratin-18 fragments. Aliment. Pharm. Ther. 39(3), 254–269 (2014). • Comprehensively reviews the current noninvasive assessments on NASH and mainly contains physical and clinical methods.
    • 20 Loomba R, Quehenberger O, Armando A, Dennis EA. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J. Lipid Res. 56(1), 185–192 (2015).
    • 21 Tanwar S, Trembling PM, Guha IN et al. Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatology 57(1), 103–111 (2013).
    • 22 Cao W, Zhao C, Shen C, Wang Y. Cytokeratin 18, alanine aminotransferase, platelets and triglycerides predict the presence of nonalcoholic steatohepatitis. PLoS ONE 8(12), e82092 (2013).
    • 23 Shimada M, Kawahara H, Ozaki K et al. Usefulness of a combined evaluation of the serum adiponectin level, HOMA-IR, and serum type IV collagen 7S level to predict the early stage of nonalcoholic steatohepatitis. Am. J. Gastroenterol. 102(9), 1931–1938 (2007).
    • 24 Younossi ZM, Jarrar M, Nugent C et al. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH). Obes. Surg. 18(11), 1430–1437 (2008).
    • 25 Becker PP, Rau M, Schmitt J et al. Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS ONE 10(11), e142661 (2015).
    • 26 Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS ONE 9(8), e105192 (2014).
    • 27 Polyzos SA, Kountouras J, Slavakis A et al. A novel noninvasive index for nonalcoholic steatohepatitis: a pilot study. Biomarkers 18(7), 607–613 (2013).
    • 28 Feldstein AE, Wieckowska A, Lopez AR, Liu Y, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50(4), 1072–1078 (2009).
    • 29 Yilmaz Y. Biomarkers for early detection of non-alcoholic steatohepatitis: implications for drug development and clinical trials. Curr. Drug Targets 14(11), 1357–1366 (2013).
    • 30 Polyzos SA, Kountouras J, Papatheodorou A et al. Adipocytokines and cytokeratin-18 in patients with nonalcoholic fatty liver disease: introduction of CHA index. Ann. Hepatol. 12(5), 749–757 (2013).
    • 31 Kawanaka M, Nishino K, Nakamura J et al. Correlation between serum cytokeratin-18 and the progression or regression of non-alcoholic fatty liver disease. Ann. Hepatol. 14(6), 837–844 (2015).
    • 32 Shen J, Chan HL, Wong GL et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J. Hepatol. 56(6), 1363–1370 (2012).
    • 33 Yang M, Xu D, Liu Y et al. Combined serum biomarkers in non-invasive diagnosis of non-alcoholic steatohepatitis. PLoS ONE 10(6), e131664 (2015).
    • 34 Cusi K, Chang Z, Harrison S et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J. Hepatol. 60(1), 167–174 (2014).
    • 35 Okuyama N, Ide Y, Nakano M et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int. J. Cancer 118(11), 2803–2808 (2006).
    • 36 Yoon Y, Török N, Krueger E, Oswald B, McNiven MA. Ethanol-induced alterations of the microtubule cytoskeleton in hepatocytes. Am. J. Physiol. G757–G765 (1998).
    • 37 Kamada Y, Akita M, Takeda Y et al. Serum fucosylated haptoglobin as a novel diagnostic biomarker for predicting hepatocyte ballooning and nonalcoholic steatohepatitis. PLoS ONE 8(6), e66328 (2013).
    • 38 Kamada Y, Fujii H, Fujii H et al. Serum Mac-2 binding protein levels as a novel diagnostic biomarker for prediction of disease severity and nonalcoholic steatohepatitis. Proteomics Clin. Appl. 7(9–10), 648–656 (2013).
    • 39 Stojsavljević S. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J. Gastroenterol. 20(48), 18070 (2014).
    • 40 Abenavoli L, Peta V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev. Recent Clin. Trials 9(3), 134–140 (2014).
    • 41 Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism 65(8), 1062–1079 (2016).
    • 42 Yoda-Murakami M, Taniguchi M, Takahashi K et al. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem. Biophys. Res. Commun. 285(2), 372–377 (2001).
    • 43 Yamauchi T, Kamon J, Ito Y et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941), 762–769 (2003).
    • 44 Gatselis NK, Ntaios G, Makaritsis K, Dalekos GN. Adiponectin: a key playmaker adipocytokine in non-alcoholic fatty liver disease. Clin. Exp. Med. 14(2), 121–131 (2014).
    • 45 Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology 40(1), 46–54 (2004).
    • 46 van der Poorten D, Samer CF, Ramezani-Moghadam M et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause? Hepatology 57(6), 2180–2188 (2013).
    • 47 Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 60(3), 313–326 (2011).
    • 48 Fukushima J, Kamada Y, Matsumoto H et al. Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol. Res. 39(7), 724–738 (2009).
    • 49 Ma H, You G, Zhang X et al. A novel role of globular adiponectin in treatment with HFD/STZ induced T2DM combined with NAFLD rats. Sci. World J. 2014, 1–7 (2014).
    • 50 Jamali R, Arj A, Razavizade M, Aarabi MH. Prediction of nonalcoholic fatty liver disease via a novel panel of serum adipokines. Medicine 95(5), e2630 (2016).
    • 51 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505), 425–432 (1994).
    • 52 Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann. Intern. Med. 152(2), 93–100 (2010).
    • 53 Farooqi IS, Matarese G, Lord GM et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110(8), 1093–1103 (2002).
    • 54 Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 18(1), 29–42 (2013).
    • 55 Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol. 68(4), 437–446 (2000).
    • 56 Polyzos SA, Aronis KN, Kountouras J, Raptis DD, Vasiloglou MF, Mantzoros CS. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia 59(1), 30–43 (2016).
    • 57 Zelber-Sagi S, Lotan R, Shlomai A et al. Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. J. Hepatol. 56(5), 1145–1151 (2012).
    • 58 Curat CA, Wegner V, Sengenes C et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49(4), 744–747 (2006).
    • 59 Revollo JR, Korner A, Mills KF et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6(5), 363–375 (2007).
    • 60 Moschen AR, Gerner RR, Tilg H. Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders. Curr. Pharm. Des. 16(17), 1913–1920 (2010).
    • 61 Genc H, Dogru T, Kara M et al. Association of plasma visfatin with hepatic and systemic inflammation in nonalcoholic fatty liver disease. Ann. Hepatol. 12(4), 548–555 (2013).
    • 62 Jarrar MH, Baranova A, Collantes R et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment. Pharm. Ther. 27(5), 412–421 (2008).
    • 63 Kloting N, Graham TE, Berndt J et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 6(1), 79–87 (2007).
    • 64 Muenzner M, Tuvia N, Deutschmann C et al. Retinol-binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor alpha activity. Mol. Cell. Biol. 33(20), 4068–4082 (2013).
    • 65 Yang Q, Graham TE, Mody N et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and Type 2 diabetes. Nature 436(7049), 356–362 (2005).
    • 66 Terra X, Auguet T, Broch M et al. Retinol binding protein-4 circulating levels were higher in nonalcoholic fatty liver disease vs. histologically normal liver from morbidly obese women. Obesity (Silver Spring) 21(1), 170–177 (2012).
    • 67 Milner KL, van der Poorten D, Xu A et al. Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease. Hepatology 49(6), 1926–1934 (2009).
    • 68 Kashyap SR, Diab DL, Baker AR et al. Triglyceride levels and not adipokine concentrations are closely related to severity of nonalcoholic fatty liver disease in an obesity surgery cohort. Obesity (Silver Spring) 17(9), 1696–1701 (2009).
    • 69 Alkhouri N, Lopez R, Berk M, Feldstein AE. Serum retinol-binding protein 4 levels in patients with nonalcoholic fatty liver disease. J. Clin. Gastroenterol. 43(10), 985–989 (2009).
    • 70 Nobili V, Alkhouri N, Alisi A et al. Retinol-binding protein 4: a promising circulating marker of liver damage in pediatric nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 7(5), 575–579 (2009).
    • 71 Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell. Biol. 9(2), 125–138 (2008).
    • 72 Puri P, Wiest MM, Cheung O et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50(6), 1827–1838 (2009).
    • 73 Van Rooyen DM, Larter CZ, Haigh WG et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141(4), 1393–1403 (2011).
    • 74 Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J. Hepatol. 50(4), 789–796 (2009).
    • 75 Min HK, Kapoor A, Fuchs M et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15(5), 665–674 (2012).
    • 76 Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 52(1), 175–191 (2013).
    • 77 Walenbergh SM, Shiri-Sverdlov R. Cholesterol is a significant risk factor for non-alcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 9(11), 1343–1346 (2015).
    • 78 Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim. Biophys. Acta 1852(9), 1765–1778 (2015).
    • 79 Davidson MH, Voogt J, Luchoomun J et al. Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans. Atherosclerosis 230(2), 322–329 (2013).
    • 80 Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr. Diab. Rep. 6(3), 177–181 (2006).
    • 81 Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52(2), 774–788 (2010).
    • 82 Hafizi ABM, Kian KC, Wan HW, Sarmidi MR, Yaakob H, Zaman HH. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab. Res. Rev. 31(5), 453–475 (2015).
    • 83 de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo ME. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin. Nutr. 21(3), 219–223 (2002).
    • 84 Walle P, Takkunen M, Mannisto V et al. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity. Metabolism 65(5), 655–666 (2016).
    • 85 Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 52(1), 165–174 (2013).
    • 86 Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48(4), 434–441 (2013).
    • 87 Puri P, Baillie RA, Wiest MM et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46(4), 1081–1090 (2007).
    • 88 Gorden DL, Ivanova PT, Myers DS et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS ONE 6(8), e22775 (2011).
    • 89 Martel C, Esposti DD, Bouchet A, Brenner C, Lemoine A. Non-alcoholic steatohepatitis: new insights from OMICS studies. Curr. Pharm. Biotechnol. 13(5), 726–735 (2012).
    • 90 Yamaguchi K, Yang L, McCall S et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45(6), 1366–1374 (2007).
    • 91 Kawano Y, Nishiumi S, Saito M, Yano Y, Azuma T, Yoshida M. Identification of lipid species linked to the progression of non-alcoholic fatty liver disease. Curr. Drug Targets 16(12), 1293–1300 (2015).
    • 92 Ambros V. The functions of animal microRNAs. Nature 431(7006), 350–355 (2004).
    • 93 Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209), 58–63 (2008).
    • 94 Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105(30), 10513–10518 (2008).
    • 95 Cheung O, Puri P, Eicken C et al. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48(6), 1810–1820 (2008).
    • 96 Reddy JK. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. AJP 290(5), G852–G858 (2005).
    • 97 Pirola CJ, Fernández Gianotti T, Castaño GO et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 64(5), 800–812 (2015). • A case–control study that provides novel insights into the association of circulating miRNAs with the pathogenesis of NASH.
    • 98 Amacher DE. Progress in the search for circulating biomarkers of nonalcoholic fatty liver disease. Biomarkers 19(7), 541–552 (2014).
    • 99 Jin X, Ye YF, Chen SH, Yu CH, Liu J, Li YM. microRNA expression pattern in different stages of nonalcoholic fatty liver disease. Dig. Liver Dis. 41(4), 289–297 (2009).
    • 100 Alisi A, Da SL, Bruscalupi G et al. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab. Invest. 91(2), 283–293 (2011).
    • 101 Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. microRNAs in lipid metabolism. Curr. Opin. Lipidol. 22(2), 86–92 (2011).
    • 102 Chang J, Nicolas E, Marks S et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationicamino acid transporter CAT-1. RNA Biol. 1(2), 106–113 (2004).
    • 103 Cheung O, Sanyal AJ. Role of microRNAs in non-alcoholic steatohepatitis. Curr. Pharm. Design 16(17), 1952–1957 (2010).
    • 104 Clarke JD, Sharapova T, Lake AD, Blomme E, Maher J, Cherrington NJ. Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis. J. Appl. Toxicol. 34(6), 726–732 (2014).
    • 105 Miyaaki H, Ichikawa T, Kamo Y et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int. 34(7), e302–e307 (2014).
    • 106 Yamada H, Suzuki K, Ichino N et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin. Chim. Acta 424, 99–103 (2013).
    • 107 Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, biological relevance, and methods of study. BioScience 65(8), 783–797 (2015).
    • 108 Yáñez-Mó M, Siljander RM, Andreu Z et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 1–60 (2015).
    • 109 Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6), 1226–1232 (2016).
    • 110 Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles 3, 1–8 (2014).
    • 111 Sato K, Meng F, Glaser S, Alpini G. Exosomes in liver pathology. J. Hepatol. 65(1), 213–221 (2016).
    • 112 Povero D, Eguchi A, Niesman IR et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require vanin-1 for uptake by endothelial cells. Sci. Signal. 6(296), a88 (2013).
    • 113 Kornek M, Lynch M, Mehta SH et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology 143(2), 448–458 (2012).
    • 114 Povero D, Eguchi A, Li H et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS ONE 9(12), e113651 (2014).
    • 115 Hirsova P, Ibrahim SH, Krishnan A et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150(4), 956–967 (2016).
    • 116 Cheung O, Puri P, Eicken C et al. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48(6), 1810–1820 (2008).
    • 117 Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared with intracellular and cell-free blood. J. Extracell. Vesicles 3(1), 17–27 (2013).
    • 118 Bala S, Petrasek J, Mundkur S et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56(5), 1946–1957 (2012).
    • 119 Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E et al. Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin. Appl. 4(4), 416–425 (2010).
    • 120 Heeringa M, Hastings A, Yamazaki S, de Koning P. Serum biomarkers in nonalcoholic steatohepatitis: value for assessing drug effects? Biomark. Med. 6(6), 743–757 (2012). • A previous analysis of the drug value of circulating biomarkers in NASH.
    • 121 Armutcu F, Akyol S, Ucar F, Erdogan S, Akyol O. Markers in nonalcoholic steatohepatitis. Adv. Clin. Chem. 61, 67–125 (2013).
    • 122 Sodhi K, Bracero L. Role of serum biomarkers in early detection of non-alcoholic steatohepatitis and fibrosis in west Virginian children. J. Clin. Cell. Immunol. 7(1), 393 (2016).
    • 123 Tanaka N, Takahashi S, Zhang Y et al. Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. Biochim. Biophys. Acta 1852(7), 1242–1252 (2015).
    • 124 Liu J, Xu Y, Hu Y, Wang G. The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism 64(3), 380–390 (2015).
    • 125 Adams LA. Biomarkers of liver fibrosis. J. Gastroenterol. Hepatol. 26(5), 802–809 (2011).
    • 126 Chernyak OO, Sentsova TB, Vorozhko IV, Tutelyan VA, Gapparova KM, Isakov VA. [Genomic, proteomic and metabolomic predictors of nonalcoholic fatty liver disease development in obese patients. Part I]. Voprosy Pitaniia 84(4), 18–24 (2015). • Analyzes diverse molecules by genomic, proteomic and metabolomic techniques and may enhance the performance of predictors of nonalcoholic fatty liver disease.
    • 127 Paredes AH, Torres DM, Harrison SA. Treatment of nonalcoholic fatty liver disease: role of dietary modification and exercise. Clin. Liver Dis. 1(4), 117–118 (2012). • Guidelines and recommendations for NASH patients to help improve their health.
    • 128 Heilig M, Leggio L. What the alcohol doctor ordered from the neuroscientist: theragnostic biomarkers for personalized treatments. Prog. Brain Res. 224(1), 69–77 (2015).
    • 129 Sanyal AJ, Friedman SL, McCullough AJ, Dimick-Santos L. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases – U.S. Food and Drug Administration Joint Workshop. Hepatology 61(4), 1392–1405 (2015).
    • 130 Anstee QM, Concas D, Kudo H et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol. 53(3), 542–550 (2010).
    • 131 Sanyal AJ, Brunt EM, Kleiner DE et al. End points and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54(1), 344–353 (2011).