We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

DDX11-AS1 modulates DNA damage repair to enhance paclitaxel resistance of lung adenocarcinoma cells

    Jianhong Liu

    Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China

    ,
    Xu Yang

    Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China

    ,
    Shasha Gao

    Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China

    ,
    Minya Wen

    Department of Laboratory, Jinhua Wenrong Hospital, Jinhua City, Zhejiang Province, 322118, China

    &
    Qiong Yu

    *Author for correspondence: Tel.: +86 138 6798 3231;

    E-mail Address: qiongyuass@163.com

    Department of Respiratory Medicine, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua City, Zhejiang Province, 321000, China

    Published Online:https://doi.org/10.2217/pgs-2022-0121

    Aim: To investigate the influence of DDX11-AS1 on paclitaxel (PTX) resistance in lung adenocarcinoma (LUAD). Methods: LncRNA expression and functional enrichment analyses were processed via bioinformatics methods. DDX11-AS1 expression was detected via quantitative real-time PCR. Cell counting kit-8, colony formation, flow cytometry and comet assays were manipulated to measure cell proliferation, apoptosis, cell cycle and DNA damage repair, respectively. Western blot was used to assess DNA damage-related protein expression. Results:DDX11-AS1 was in a high expression status in LUAD, and could promote LUAD cell proliferation and PTX resistance, while suppressing cell apoptosis. DNA damage repairing ability was also modulated by the change of DDX11-AS1 expression. Conclusion: LncRNA DDX11-AS1 promotes DNA damage repair to enhance PTX resistance in LUAD.

    References

    • 1. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 2. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 9(2), 117 (2018).
    • 3. Inamura K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: tumor initiation and progression. Int. J. Mol. Sci. 19(4), 1259 (2018).
    • 4. Abu Samaan TM, Samec M, Liskova A, Kubatka P, Busselberg D. Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules 9(12), 789 ( 2019).
    • 5. Kellokumpu-Lehtinen P, Tuunanen T, Asola R et al. Weekly paclitaxel – an effective treatment for advanced breast cancer. Anticancer Res. 33(6), 2623–2627 (2013).
    • 6. Van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol. 76(6), 1101–1112 (2015).
    • 7. Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25(18), 2677–2681 (2014).
    • 8. Bhat SA, Ahmad SM, Mumtaz PT et al. Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res. 1(1), 43–50 (2016).
    • 9. Huarte M. The emerging role of lncRNAs in cancer. Nat. Med. 21(11), 1253–1261 (2015).
    • 10. Chen D, Chen J, Gao J et al. LncRNA DDX11-AS1 promotes bladder cancer occurrence via protecting LAMB3 from downregulation by sponging miR-2355-5p. Cancer Biother. Radiopharm. 35(5), 319–328 (2020).
    • 11. Ren Z, Liu X, Si Y, Yang D. Long non-coding RNA DDX11-AS1 facilitates gastric cancer progression by regulating miR-873-5p/SPC18 axis. Artif. Cells Nanomed. Biotechnol. 48(1), 572–583 (2020).
    • 12. Tian JB, Cao L, Dong GL. Long noncoding RNA DDX11-AS1 induced by YY1 accelerates colorectal cancer progression through targeting miR-873/CLDN7 axis. Eur. Rev. Med. Pharmacol. Sci. 23(13), 5714–5729 (2019).
    • 13. Li Y, Zhuang W, Huang M, Li X. Long noncoding RNA DDX11-AS1 epigenetically represses LATS2 by interacting with EZH2 and DNMT1 in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 514(4), 1051–1057 (2019).
    • 14. Feng X, Yang S, Zhou S, Deng S, Xie Y. Long non-coding RNA DDX11-AS1 promotes non-small cell lung cancer development via regulating PI3K/AKT signalling. Clin. Exp. Pharmacol. Physiol. 47(9), 1622–1631 (2020).
    • 15. Song W, Qian Y, Zhang MH et al. The long non-coding RNA DDX11-AS1 facilitates cell progression and oxaliplatin resistance via regulating miR-326/IRS1 axis in gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 24(6), 3049–3061 (2020).
    • 16. Zhang S, Jiang H, Xu Z et al. The resistance of esophageal cancer cells to paclitaxel can be reduced by the knockdown of long noncoding RNA DDX11-AS1 through TAF1/TOP2A inhibition. Am. J. Cancer Res. 9(10), 2233–2248 (2019).
    • 17. Liang M, Zhu B, Wang M, Jin J. Knockdown of long non-coding RNA DDX11-AS1 inhibits the proliferation, migration and paclitaxel resistance of breast cancer cells by upregulating microRNA-497 expression. Mol. Med. Rep. 25(4), 123 (2022).
    • 18. Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010).
    • 19. Zhao XG, Hu JY, Tang J et al. miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis. 10(7), 479 (2019).
    • 20. Guo C, Wang H, Jiang H, Qiao L, Wang X. Circ_0011292 enhances paclitaxel resistance in non-small cell lung cancer by regulating miR-379-5p/TRIM65 axis. Cancer Biother. Radiopharm. 37(2), 84–95 (2022).
    • 21. Sanches JGP, Song B, Zhang Q et al. The role of KDM2B and EZH2 in regulating the stemness in colorectal cancer through the PI3K/AKT pathway. Front. Oncol. 11, 637298 (2021).
    • 22. Liu R, Shen L, Lin C et al. MiR-1587 regulates DNA damage repair and the radiosensitivity of CRC cells via targeting LIG4. Dose Response 18(2), 1559325820936906 (2020).
    • 23. Khandekar MJ, Banks AS, Laznik-Bogoslavski D et al. Noncanonical agonist PPARgamma ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc. Natl Acad. Sci. USA 115(3), 561–566 (2018).
    • 24. Spella M, Stathopoulos GT. Immune resistance in lung adenocarcinoma. Cancers (Basel) 13(3), 384 (2021).
    • 25. Mao Y, Xu R. Circular RNA CDR1-AS contributes to pemetrexed and cisplatin chemoresistance through EGFR/PI3K signaling pathway in lung adenocarcinoma. Biomed. Pharmacother. 123, 109771 (2020).
    • 26. Ding G, Zeng Y, Yang D et al. Silenced lncRNA DDX11-AS1 or up-regulated microRNA-34a-3p inhibits malignant phenotypes of hepatocellular carcinoma cells via suppression of TRAF5. Cancer Cell Int. 21(1), 179 (2021).
    • 27. Wan T, Zheng J, Yao R, Yang S, Zheng W, Zhou P. LncRNA DDX11-AS1 accelerates hepatocellular carcinoma progression via the miR-195-5p/MACC1 pathway. Ann. Hepatol. 20, 100258 (2021).
    • 28. Xu M, Zhao X, Zhao S et al. Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett. 520, 282–294 (2021).
    • 29. Wu C, Wang Z, Tian X, Wang J, Zhang Y, Wu B. Long non-coding RNA DDX11-AS1 promotes esophageal carcinoma cell proliferation and migration through regulating the miR-514b-3p/RBX1 axis. Bioengineered 12(1), 3772–3786 (2021).
    • 30. Xiang Z, Lv Q, Zhang Y et al. Long non-coding RNA DDX11-AS1 promotes the proliferation and migration of glioma cells by combining with HNRNPC. Mol. Ther. Nucleic Acids 28, 601–612 (2022).
    • 31. Kotake Y, Goto T, Naemura M, Inoue Y, Okamoto H, Tahara K. Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma cells. Anticancer Res. 37(1), 81–85 (2017).
    • 32. Sharma V, Khurana S, Kubben N et al. A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep. 16(11), 1520–1534 (2015).
    • 33. Wan G, Hu X, Liu Y et al. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 32(21), 2833–2847 (2013).
    • 34. Ju ZS, Sun B, Bao D, Zhang XF. Effect of lncRNA-BLACAT1 on drug resistance of non-small cell lung cancer cells in DDP chemotherapy by regulating cyclin D1 expression. Eur. Rev. Med. Pharmacol. Sci. 24(18), 9465–9472 (2020).
    • 35. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58(5), 235–263 (2017).
    • 36. Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 36(5-6), 278–293 (2022).