We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/rme.15.13

Hematopoietic stem cell transplantation (HSCT) is a life-saving treatment for inherited anemias, immunodeficiencies or hematologic malignancies. A major complication of allo-HSCT associated with high transplant-related mortality rates is graft-versus-host disease (GvHD). Current and future clinical benefits in HSCT enabled by advances in hematopoietic stem cells, mesenchymal stem cells, Tregs and natural killer cells technologies are reviewed here and discussed. Among these evolutions, based on the need for mesenchymal stem cells to be recruited by an inflammatory environment, the development and use of novel GvHD biomarkers could be explored further to deliver the right pharmaceutical to the right patient at the right time. The successful commercialization of cytotherapeutics to efficiently manage GvHD will create a virtuous ‘halo’ effect for regenerative medicine.

References

  • 1 Vertès AA. The potential of cytotherapeutics in hematologic reconstitution and in the treatment and prophylaxis of graft-versus-host disease. Chapter I: Current practice and remaining unmet medical needs. Regen. Med. 10 (3), 331–373 (2015) (In Press).
  • 2 Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257(11), 491–496 (1957).
  • 3 Thomas ED, Fefer A, Buckner CD, Storb R. Current status of blood marrow transplantation for aplastic anemia and acute leukemia. Blood 49(5), 671–681 (1977).
  • 4 Storb R, Thomas ED, Weiden PL et al. Aplastic anemia treated by allogeneic blood marrow transplantation: a report on 49 new cases from Seattle. Blood 48(6), 817–841 (1976).
  • 5 Jenq RR, Van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat. Rev. Cancer 10(3), 213–221 (2010).
  • 6 Gratwohl A, Baldomero H, Horisberger B, Schmid C, Passweg J, Urbano-Ispizua A. Current trends in hematopoietic stem cell transplantation in Europe. Blood 100(7), 2374–2386 (2002).
  • 7 Appelbaum FR. Hematopoietic-cell transplantation at 50. N. Engl. J. Med. 357, 1472–1475 (2007).
  • 8 Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112(12), 4371–4383 (2008).
  • 9 Barton-Burke M, Dwinell DM, Kafkas L et al. Graft-versus-host disease: a complex long-term side effect of hematopoietic stem cell transplant. Oncology (Williston Park) 22(11 Suppl. Nurse Ed.), 31–45 (2008).
  • 10 Sung AD, Chao NJ. Concise review: acute graft-versus-host disease: immunobiology, prevention, and treatment. Stem Cells Transl. Med. 2(1), 25–32 (2013).
  • 11 Teshima T. Th1 and Th17 join forces for acute GvHD. Blood 118(18), 4765–4767 (2011).
  • 12 Pan B, Zhang Y, Sun Y et al. Deviated balance between Th1 and Th17 cells exacerbates acute graft-versus-host disease in mice. Cytokine 68(2), 69–75 (2014).
  • 13 Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS. Effector CD4+ T cells, the cytokines they generate, and GvHD: something old and something new. Blood 117(12), 3268–3276 (2011).
  • 14 Harris AC, Ferrara JL, Braun TM et al. Plasma biomarkers of lower gastrointestinal and liver acute GVHD. Blood 119(12), 2960–2963 (2012).
  • 15 Macmillan ML, Defor TE, Weisdorf DJ. The best endpoint for acute GVHD treatment trials. Blood 115(26), 5412–5417 (2010).
  • 16 Vertès AA. Deciphering the therapeutic stem cell strategies of large and midsize pharmaceutical firms. Regen. Med. 9(4), 479–495 (2014).
  • 17 Vertès AA, Qureshi N, Caplan AI, Babiss L. Stem Cells in Regenerative Medicine: Science, Regulation, and Business Strategies. Wiley, Chichester, UK (2015).
  • 18 Sharma RR, Pollock K, Hubel A, Mckenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5), 1418–1437 (2014).
  • 19 Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. Expert Opin. Biol. Ther. 13(5), 673–691 (2013).
  • 20 Francois M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing. Cytotherapy 14(2), 147–152 (2012).
  • 21 Galipeau J. Concerns arising from MSC retrieval from cryostorage and effect on immune suppressive function and pharmaceutical usage in clinical trials. ISBT Sci. Series 8(1), 100–101 (2013).
  • 22 Qasim W, Thrasher AJ. Progress and prospects for engineered T-cell therapies. Br. J. Haematol. 166(6), 818–829 (2014).
  • 23 Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13(4), 392–402 (2013).
  • 24 Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. 6, 457–478 (2011).
  • 25 Metheny L, Caimi P, De Lima M. Cord blood transplantation: can we make it better? Front. Oncol. 3, 238 (2013).
  • 26 Battiwalla M, Barrett AJ. Bone marrow mesenchymal stromal cells to treat complications following allogeneic stem cell transplantation. Tissue Eng. Part B Rev. 20(3), 211–217 (2014).
  • 27 Amorin B, Alegretti AP, Valim V et al. Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum. Cell 27(4), 137–150 (2014).
  • 28 Ringden O, Uzunel M, Rasmusson I et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10), 1390–1397 (2006).
  • 29 Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315–317 (2006).
  • 30 English K, Mahon BP. Allogeneic mesenchymal stem cells: agents of immune modulation. J. Cell. Biochem. 112(8), 1963–1968 (2011).
  • 31 James AA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32(3), 252–260 (2014).
  • 32 Lalu MM, Mcintyre L, Pugliese C et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 7(10), e47559 (2012).
  • 33 Devine SM, Bartholomew AM, Mahmud N et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol. 29(2), 244–255 (2001).
  • 34 Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32(3), 252–260 (2014).
  • 35 Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6), 2114–2120 (2006).
  • 36 Mukonoweshuro B. Immunogenicity of Allogeneic Mouse Mesenchymal Stem Cells (MSC) [PhD thesis]. Faculty of Biological Sciences PhD The University of Leeds, UK (2012).
  • 37 Vertès AA. Creating an effective delivery plan for cell therapy. In: World Stem Cell Report 2009. Siegel B, Margolin RE, Blatt RJ, Haecker S (Eds). Genetics Policy Institute, Palm Beach, FA, USA (2009).
  • 38 Campeau PM, Rafei M, Francois M, Birman E, Forner KA, Galipeau J. Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol. Ther. 17(2), 369–372 (2009).
  • 39 Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 9, 52 (2011).
  • 40 Komanduri KV, St John LS, de Lima M et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 110(13), 4543–4551 (2007).
  • 41 Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122(4), 491–498 (2013).
  • 42 Taupin P. Transplantation of cord blood stem cells for treating hematologic diseases and strategies to improve engraftment. Regen. Med. 7(6), 703–715 (2010).
  • 43 Danby R, Rocha V. Current strategies to improve engraftment in cord blood transplantation. J. Stem Cell Res. Ther. 4(2), 172 (2014).
  • 44 Barker JN, Fei M, Karanes C et al. Results of a prospective multicentre myeloablative double-unit cord blood transplantation trial in adult patients with acute leukaemia and myelodysplasia. Br. J. Haematol. 168(3), 405–412 (2014).
  • 45 Barker JN, Weisdorf DJ, Defor TE et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 105(3), 1343–1347 (2005).
  • 46 Scaradavou A, Brunstein CG, Eapen M et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood 121(5), 752–758 (2013).
  • 47 Schmitz N, Beksac M, Hasenclever D et al. Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard-risk leukemia. Blood 100(3), 761–767 (2002).
  • 48 Horowitz MM, Rowlings PA, Passweg JR. Allogeneic blood marrow transplantation for CML: a report from the International Bone Marrow Transplant Registry. Bone Marrow Transplant. 17(Suppl. 3), S5–S6 (1996).
  • 49 Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin. Biol. Ther. 11(2), 189–197 (2011).
  • 50 Penn MS, Pastore J, Miller T, Aras R. SDF-1 in myocardial repair. Gene Ther. 19(6), 583–587 (2012).
  • 51 Brenner S, Whiting-Theobald N, Kawai T et al. Transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells 22(7), 1128–1133 (2004).
  • 52 Wynn RF, Hart CA, Corradi-Perini C et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9), 2643–2645 (2004).
  • 53 Ramirez P, Wagner JE, Defor TE et al. CXCR4 expression in CD34+ cells and unit predominance after double umbilical cord blood transplantation. Leukemia 27(5), 1181–1183 (2013).
  • 54 Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 106(6), 1901–1910 (2005).
  • 55 Berg EL, Mcevoy LM, Berlin C, Bargatze RF, Butcher EC. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 366(6456), 695–698 (1993).
  • 56 Somers WS, Tang J, Shaw GD, Camphausen RT. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1. Cell 103, 467–479 (2000).
  • 57 Frenette PS, Subbarao S, Mazo IB, Von Andrian UH, Wagner DD. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc. Natl Acad. Sci. USA 95(24), 14423–14428 (1998).
  • 58 Katayama Y, Hidalgo A, Furie BC, Vestweber D, Furie B, Frenette PS. PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood 102(6), 2060–2067 (2003).
  • 59 Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188(3), 465–474 (1998).
  • 60 Robinson SN, Thomas MW, Lu JJ et al. Cord blood CD34+ stem cell Sialyl Lewis X levels and E-selectin binding are predictive of engraftment in mice: functional separation of stemness and homing to improve engraftment. Blood 122(21), 893 (2013).
  • 61 Jubeli E, Moine L, Vergnaud-Gauduchon J, Barratt G. E-selectin as a target for drug delivery and molecular imaging. J Control. Release 158(2), 194–206 (2012).
  • 62 Luhn K, Wild MK. Human deficiencies of fucosylation and sialylation affecting selectin ligands. Semin. Immunopathol. 34(3), 383–399 (2012).
  • 63 Robinson SN, Simmons PJ, Thomas MW et al. Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rgamma(null) mice. Exp. Hematol. 40(6), 445–456 (2012).
  • 64 Xia L, Mcdaniel JM, Yago T, Doeden A, Mcever RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104(10), 3091–3096 (2004).
  • 65 Cord Blood Fucosylation. United States National Institute of Health NCT01471067. https://clinicaltrials.gov/ct2/show/NCT01471067.
  • 66 Study of ASC-101 in Patients With Hematologic Malignancies Who Receive Dual-cord Umbilical Cord Blood Transplantation. United States National Institute of Health NCT01983761. https://clinicaltrials.gov/ct2/show/NCT01983761.
  • 67 Robinson SN, Thomas MW, Simmons PJ et al. Fucosylation with fucosyltransferase VI or fucosyltransferase VII improves cord blood engraftment. Cytotherapy 16(1), 84–89 (2014).
  • 68 Popat UR, Oran B, Hosing CM et al. Ex vivo fucosylation of cord blood accelerates neutrophil and platelet engraftment. Blood 122, 691 (2013).
  • 69 Farag SS, Srivastava S, Messina-Graham S et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev. 22(7), 1007–1015 (2013).
  • 70 O'leary H, Ou X, Broxmeyer HE. The role of dipeptidyl peptidase 4 in hematopoiesis and transplantation. Curr. Opin. Hematol. 20(4), 314–319 (2013).
  • 71 Li L, Kim HT, Nellore A et al. Prostaglandin E2 promotes survival of naive UCB T-cells via the Wnt/beta-catenin pathway and alters immune reconstitution after UCBT. Blood Cancer J. 4, e178 (2014).
  • 72 Cutler C, Multani P, Robbins D et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122(17), 3074–3081 (2013).
  • 73 Goessling W, Allen RS, Guan X et al. Prostaglandin E2 enhances engraftment of human cord blood stem cells and shows long-term safety in preclinical non-human primate transplant models. Cell Stem Cell 8, 445–458 (2011).
  • 74 Sitagliptin Umbilical Cord Blood Transplant Study. United States National Institute of Health NCT00862719. https://clinicaltrials.gov/ct2/show/NCT00862719.
  • 75 De Mendizábal NV, Strother RM, Farag SS et al. Modelling the sitagliptin effect on dipeptidyl peptidase-4 activity in adults with haematological malignancies after umbilical cord blood haematopoietic cell transplantation. Clin. Pharmacokinet. 53(3), 247–259 (2014).
  • 76 Multicenter Phase II of CD26 Using Sitagliptin for Engraftment After UBC Transplant. United States National Institute of Health NCT01720264. https://clinicaltrials.gov/ct2/show/NCT01720264.
  • 77 Hal BE, Pelus LM. Inhibition of DPP4/CD26 and dmPGE treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cells Mol. Dis. 53(1), 34–38 (2014).
  • 78 Single Treatment with FT1050 of an Ex-vivo Modulated Umbilical Cord Blood Unit. United States National Institute of Health NCT01527838. https://clinicaltrials.gov/ct2/show/NCT01527838.
  • 79 Beksac M, Yurdakul P. Modalities to improve cord blood engraftment. J. Stem Cell Res. Ther. 4(3), 182 (2014).
  • 80 Sastry PS. Ex vivo expanded allogeneic cord blood progenitor cell transplantation with a non-myeloablative conditioning regimen would cure autoimmune diseases. Med. Hypotheses 54(3), 423–424 (2000).
  • 81 Shpall EJ, Quinones R, Giller R et al. Transplantation of ex vivo expanded cord blood. Biol. Blood Marrow Transplant. 8(7), 368–376 (2002).
  • 82 Bordeaux-Rego P, Luzo A, Costa FF, Olalla Saad ST, Crosara-Alberto DP. Both interleukin-3 and interleukin-6 are necessary for better ex vivo expansion of CD133+ cells from umbilical cord blood. Stem Cell Dev. 19, 413–422 (2010).
  • 83 Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117(23), 6083–6090 (2011).
  • 84 De Lima M, Mcniece I, Robinson SN et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367(24), 2305–2315 (2012).
  • 85 Gratwohl A, Baldomero H, Aljurf M et al. Hematopoietic stem cell transplantation: a global perspective. JAMA 303(16), 1617–1624 (2010).
  • 86 Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16(2), 232–236 (2010).
  • 87 De Lima M, Mcmannis J, Gee A et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Blood Marrow Transplant. 41(9), 771–778 (2008).
  • 88 Peled T, Glukhman E, Hasson N et al. Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp. Hematol. 33(10), 1092–1100 (2005).
  • 89 Stiff PJ, Montesinos P, Peled T et al. StemEx® (copper chelation based) ex vivo expanded umbilical cord blood stem cell transplantation (UCBT) accelerates engraftment and improves 100 day survival in myeloablated patients compared to a registry cohort undergoing double unit UCBT: results of a multicenter study of 101 patients with hematologic malignancies. Blood 122, 295 (2013).
  • 90 Carroll J. Novartis slashes ante, inks another Gamida Cell buyout pact in $635M leukemia deal. Fierce Biotech, 19 August (2014).
  • 91 Efficacy and Safety Study of StemEx®, to Treat Subjects With High Risk Hematologic Malignancies, Following Myeloablative Therapy (ExCell). US National Institute of Health NCT00469729. https://clinicaltrials.gov/ct2/show/NCT00469729.
  • 92 Gamida cell reports FDA recommending further study of StemEx. Gamida Cell, www.gamida-cell.com/press_item.asp?id=56.
  • 93 Horwitz ME, Chao NJ, Rizzieri DA et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J. Clin. Invest. 124(7), 3121–3128 (2014).
  • 94 Pilot Study Evaluating Safety & Efficacy of DCBT: NiCord® & UNM CBU to Patients With Hematological Malignancies. US National Institute of Health NCT01221857. https://clinicaltrials.gov/ct2/show/NCT01221857.
  • 95 Boitano AE, Wang J, Romeo R et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329(5997), 1345–1348 (2010).
  • 96 LFU835-expanded umbilical cord blood hematopoietic stem cells in patients with hematological malignancies. United States National Institute of Health NCT01474681. https://clinicaltrials.gov/ct2/show/NCT01474681.
  • 97 Wagner JE, Brunstein CG, Mckenna D et al. Safety and exploratory efficacy of ex vivo expanded umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC) using cytokines and Stem-Regenin 1 (SR1): interim results of a phase 1/2 dose escalation clinical study. Blood 122(21), 698 (2013).
  • 98 Safety and Tolerability of HSC835 in Patients Undergoing Single Umbilical Cord Blood Transplant. United States National Institute of Health NCT01930162. https://clinicaltrials.gov/ct2/show/NCT01930162.
  • 99 Gori JL, Watts KL, Chandrasekaran D, Sauvageau G, Kiem HP. Effective expansion and engraftment of nonhuman primate CD34+ hematopoietic stem cells after co-culture with the small molecule UM171. Blood 122(21), 1656 (2013).
  • 100 Li W, Li K, Wei W, Ding S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13(3), 270–283 (2013).
  • 101 Yoder MC. Cord blood banking and transplantation: advances and controversies. Curr. Opin. Pediatr. 26(2), 163–168 (2014).
  • 102 Xu T, Zhang M, Laurent T, Xie M, Ding S. Concise review: chemical approaches for modulating lineage-specific stem cells and progenitors. Stem Cells Transl. Med. 2(5), 355–361 (2013).
  • 103 Fares I, Chagraoui J, Gareau Y et al. UM171 is a novel and potent agonist of human hematopoietic stem cell renewal. Blood 122(21), 798 (2013).
  • 104 Walenda T, Bokermann G, Ventura Ferreira MS et al. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp. Hematol. 39(6), 617–628 (2011).
  • 105 Mehrasa R, Vaziri H, Oodi A et al. Mesenchymal stem cells as a feeder layer can prevent apoptosis of expanded hematopoietic stem cells derived from cord blood. Int. J. Mol. Cell. Med. 3(1), 1–10 (2014).
  • 106 Perdomo-Arciniegas AM, Vernot JP. Co-culture of hematopoietic stem cells with mesenchymal stem cells increases VCAM-1-dependent migration of primitive hematopoietic stem cells. Int. J. Hematol. 94(6), 525–532 (2011).
  • 107 Fong CY, Gauthaman K, Cheyyatraivendran S, Lin HD, Biswas A, Bongso A. Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. J. Cell. Biochem. 113(2), 658–668 (2012).
  • 108 Jing D, Fonseca AV, Alakel N et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells – modeling the niche compartments in vitro. Haematologica 95(4), 542–550 (2010).
  • 109 Walenda T, Bork S, Horn P et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell. Mol. Med. 14(1–2), 337–350 (2010).
  • 110 Fei XM, Wu YJ, Chang Z et al. Co-culture of cord blood CD34(+) cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells in NOD/SCID mice. Cytotherapy 9(4), 338–347 (2007).
  • 111 Battiwalla M, Hematti P. Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy 11(5), 503–515 (2009).
  • 112 Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Blood Marrow Transplant. 44(10), 673–681 (2009).
  • 113 Cook MM. Mesenchymal stem cells and haematopoietic stem cell culture. In: Mesenchymal Stem Cell Therapy. Chase LG, Bvemuri MC (Eds). Humana Press, New York, NY, USA, 161–172 (2013).
  • 114 P3 Study of Umbilical Cord Blood Cells Expanded With MPCs for Transplantation in Patients With Hematologic Malignancies. US National Institute of Health NCT01854567. www.clinicaltrials.gov.
  • 115 Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9(1), 204 (2007).
  • 116 Psaltis PJ, Paton S, See F et al. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J. Cell. Physiol. 223(2), 530–540 (2010).
  • 117 Harichandan A, Buhring HJ. Prospective isolation of human MSC. Best Pract. Res. Clin. Haematol. 24(1), 25–36 (2011).
  • 118 Cord Blood Expansion on Mesenchymal Stem Cells. United States National Institute of Health NCT00498316. https://clinicaltrials.gov/ct2/show/NCT00498316.
  • 119 Le Blanc K, Samuelsson H, Gustafsson B et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21(8), 1733–1738 (2007).
  • 120 Ball LM, Bernardo ME, Roelofs H et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110(7), 2764–2767 (2007).
  • 121 Carrancio S, Romo C, Ramos T et al. Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant. 22(7), 1171–1183 (2013).
  • 122 Koc ON, Gerson SL, Cooper BW et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 18(2), 307–316 (2000).
  • 123 Lazarus HM, Koc ON, Devine SM et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 11(5), 389–398 (2005).
  • 124 Macmillan ML, Blazar BR, Defor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Blood Marrow Transplant. 43(6), 447–454 (2009).
  • 125 Bernardo ME, Ball LM, Cometa AM et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Blood Marrow Transplant. 46(2), 200–207 (2011).
  • 126 MSC and HSC Coinfusion in Mismatched Minitransplants. United States National Institute of Health NCT01045382. www.clinicaltrials.gov.
  • 127 Unrelated Umbilical Cord Blood Transplantation with Coinfusion of Mesenchymal Stem Cells. United States National Institute of Health NCT01092026. www.clinicaltrials.gov.
  • 128 Intra-osseous Co-transplant of UCB and hMSC. United States National Institute of Health NCT02181478. https://clinicaltrials.gov/ct2/show/NCT02181478.
  • 129 Yang NH, Jiang F, Hu M et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22, 593–599 (2008).
  • 130 Behre G, Theurich S, Weber T, Christopeit M. Reply to ‘The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rates in hematologic malignancy patients: outcome of a pilot clinical study’ by Ning et al. Leukemia 23, 178–214 (2009).
  • 131 Ning H, Yang F, Jiang M et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22, 593–599 (2008).
  • 132 Baron F, Lechanteur C, Willems E et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol. Blood Marrow Transplant. 16(6), 838–847 (2010).
  • 133 Patel SA, Rameshwar P. Stem cell transplantation for hematological malignancies: prospects for personalized medicine and co-therapy with mesenchymal stem cells. Curr. Pharmacogenomics Person. Med. 9(3), 229–239 (2011).
  • 134 Tolar J, Le Blanc K, Blazar BR. MSCs for graft-versus-host disease. In: Mesenchymal Stromal Cells. Hematti P, Keating A (Eds). Springer, New York, NY, USA, 455–465 (2013).
  • 135 Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6(1), 34–55 (2001).
  • 136 Ye Z, Wang Y, Xie HY, Zheng SS. Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+CD25+ regulatory T-cells. Hepatobiliary Pancreat. Dis. Int. 7(6), 608–614 (2008).
  • 137 Sudres M, Norol F, Trenado A et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J. Immunol. 176(12), 7761–7767 (2006).
  • 138 Pollack A. A stem-cell-based drug gets approval in Canada. The New York Times, 17 May (2012).
  • 139 Syed BA, Evans JB. Stem cell therapy market. Nat. Rev. Drug Discov. 12(3), 185–186 (2013).
  • 140 A Phase III, Randomized, Double Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Prochymal (Ex Vivo Cultured Adult Human Mesenchymal Stem Cells) Infusion for the Treatment of Steroid Refractory Acute GvHD. United States National Institute of Health NCT00366145. www.clinicaltrials.gov.
  • 141 Newell LF, Deans RJ, Maziarz RT. Adult adherent stromal cells in the management of graft-versus-host disease. Expert Opin. Biol. Ther. 14(2), 231–246 (2014).
  • 142 Liu S, Ginestier C, Ou SJ et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71(2), 614–624 (2011).
  • 143 Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE 5(4), e10088 (2010).
  • 144 Waterman RS, Henkle SL, Betancourt AM. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE 7(9), e45590 (2012).
  • 145 Tolar J, Villeneuve P, Keating A. Mesenchymal stromal cells for graft-versus-host disease. Hum. Gene Ther. 22(3), 257–262 (2011).
  • 146 Mantovani A. MSCs, macrophages, and cancer: a dangerous menage-a-trois. Cell Stem Cell 11(6), 730–732 (2012).
  • 147 Minoo B, Barrett AJ. Safety issues in MSC therapy. In: Mesenchymal Stromal Cells. Hematti P, Keating A (Eds). Springer, New York, NY, USA, 377–387 (2013).
  • 148 Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F 3rd. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29(1), 11–19 (2011).
  • 149 Woods NB, Parker AS, Moraghebi R et al. Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines. Stem Cells 29(7), 1158–1164 (2011).
  • 150 Li C, George DR, Helton NM, Klco JM, Mudd JL, Ley TJ. Functional early hematopoietic progenitor cells derived from mouse embryonic stem cells and induced pluripotent stem cells. Blood 122, 2421 (2013).
  • 151 Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15(2), 82–92 (2014).
  • 152 Nakajima-Takagi Y, Osawa M, Iwama A. Manipulation of hematopoietic stem cells for regenerative medicine. Anat. Rec. (Hoboken) 297(1), 111–120 (2014).
  • 153 Catapult. https://ct.catapult.org.uk/multi-party-bloodpharmaconsortium-to-develop-synthetic-blood.
  • 154 WellcomeTrust. www.wellcome.ac.uk/Funding/Innovations/Funded-projects/regenerative-medicine/index.htm.
  • 155 Burrell BE, Nakayama Y, Xu J, Brinkman CC, Bromberg JS. Regulatory T-cell induction, migration, and function in transplantation. J. Immunol. 189(10), 4705–4711 (2012).
  • 156 Schneidawind D, Pierini A, Negrin RS. Regulatory T-cells and natural killer T-cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood 122(18), 3116–3121 (2013).
  • 157 Tang Q, Bluestone JA. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb. Perspect. Biol. 5(11), doi: 10.1101/cshperspect.a015552 (2013).
  • 158 Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T-cells. Immunity 38(3), 414–423 (2013).
  • 159 Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99(10), 3493–3499 (2002).
  • 160 Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T-cells suppress lethal acute graft-versus-host disease after allogeneic blood marrow transplantation. J. Exp. Med. 196(3), 389–399 (2002).
  • 161 Edinger M, Hoffmann P, Ermann J et al. CD4+CD25+ regulatory T-cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after blood marrow transplantation. Nat. Med. 9(9), 1144–1150 (2003).
  • 162 Cao T, Soto A, Zhou W et al. Ex vivo expanded human CD4+CD25+Foxp3+ regulatory T-cells prevent lethal xenogenic graft versus host disease (GVHD). Cell. Immunol. 258(1), 65–71 (2009).
  • 163 Mutis T, van Rijn RS, Simonetti ER et al. Human regulatory T-cells control xenogeneic graft-versus-host disease induced by autologous T-cells in RAG2-/-gammac-/- immunodeficient mice. Clin. Cancer Res. 12(18), 5520–5525 (2006).
  • 164 Koenecke C, Czeloth N, Bubke A et al. Alloantigen-specific de novo-induced Foxp3+ Treg revert in vivo and do not protect from experimental GVHD. Eur J. Immunol. 39(11), 3091–3096 (2009).
  • 165 Rieger K, Loddenkemper C, Maul J et al. Mucosal FOXP3+ regulatory T-cells are numerically deficient in acute and chronic GvHD. Blood 107(4), 1717–1723 (2006).
  • 166 Zorn E, Kim HT, Lee SJ et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T-cells in patients with chronic graft-versus-host disease. Blood 106(8), 2903–2911 (2005).
  • 167 Rezvani K, Mielke S, Ahmadzadeh M et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 108(4), 1291–1297 (2006).
  • 168 Miura Y, Thoburn CJ, Bright EC et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 104(7), 2187–2193 (2004).
  • 169 Matsuoka K, Kim HT, Mcdonough S et al. Altered regulatory T-cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J. Clin. Invest. 120(5), 1479–1493 (2010).
  • 170 Brunstein CG, Miller JS, Cao Q et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117(3), 1061–1070 (2011).
  • 171 Di Ianni M, Falzetti F, Carotti A et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117(14), 3921–3928 (2011).
  • 172 Siegmund K, Feuerer M, Siewert C et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106(9), 3097–3104 (2005).
  • 173 Maganto-Garcia E, Bu DX, Tarrio ML et al. Foxp3+-inducible regulatory T-cells suppress endothelial activation and leukocyte recruitment. J. Immunol. 187(7), 3521–3529 (2011).
  • 174 Zarbock A, Ley K, Mcever RP, Hidalgo A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118(26), 6743–6751 (2011).
  • 175 Angiari S, Rossi B, Piccio L et al. Regulatory T-cells suppress the late phase of the immune response in lymph nodes through P-selectin glycoprotein ligand-1. J. Immunol. 191(11), 5489–5500 (2013).
  • 176 Bollyky PL, Falk BA, Long SA et al. CD44 costimulation promotes FoxP3+ regulatory T-cell persistence and function via production of IL-2, IL-10, and TGF-beta. J. Immunol. 183(4), 2232–2241 (2009).
  • 177 Bodduluru LN, Kasala ER, Madhana RM, Sriram CS. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett. 357(2), 454–467 (2015).
  • 178 Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 76(12), 2421–2438 (1990).
  • 179 Murphy WJ, Reynolds CW, Tiberghien P, Longo DL. Natural killer cells and blood marrow transplantation. J. Natl Cancer Inst. 85(18), 1475–1482 (1993).
  • 180 Asai O, Longo DL, Tian ZG et al. Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic blood marrow transplantation. J. Clin. Invest. 101(9), 1835–1842 (1998).
  • 181 Klingemann HG. Cellular therapy of cancer with natural killer cells – where do we stand? Cytotherapy 15, 1185–1194 (2013).
  • 182 Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4), 1484–1490 (2006).
  • 183 Lundqvist A, Mccoy JP, Samsel L, Childs R. Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors. Blood 109(8), 3603–3606 (2007).
  • 184 Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562), 2097–2100 (2002).
  • 185 Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat. Rev. Immunol. 7(5), 329–339 (2007).
  • 186 Leung W, Iyengar R, Turner V et al. Determinants of antileukemia effects of allogeneic NK cells. J. Immunol. 172(1), 644–650 (2004).
  • 187 Murphy WJ, Longo DL. The potential role of NK cells in the separation of graft-versus-tumor effects from graft-versus-host disease after allogeneic blood marrow transplantation. Immunol. Rev. 157, 167–176 (1997).
  • 188 Tonn T, Schwabe D, Klingemann HG et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15, 1563–1570 (2013).
  • 189 Lazarus H, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Blood Marrow Transplant. 16(4), 557–564 (1995).
  • 190 Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).
  • 191 Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999).
  • 192 Caplan AI. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).
  • 193 Caplan AI. MSCs as therapeutics. In: Mesenchymal Stromal Cells. Hematti P, Keating A (Eds). Springer, New York, NY, USA, 79–90 (2013).
  • 194 Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front. Immunol. 4, 201 (2013).
  • 195 Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6), 709–716 (2012).
  • 196 Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12(5), 383–396 (2012).
  • 197 Shi Y, Su J, Roberts AI, Rabson AB, Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 33, 136–143 (2012).
  • 198 Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124(4), 823–835 (2006).
  • 199 Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells 31(10), 2042–2046 (2013).
  • 200 Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28(8), 875–884 (2000).
  • 201 Kaipe H, Erkers T, Sadeghi B, Ringden O. Stromal cells – are they really useful for GVHD? Blood Marrow Transplant. 49(6), 737–743 (2014).
  • 202 Herrmann RP, Sturm MJ. Adult human mesenchymal stromal cells and the treatment of graft versus host disease. Stem Cells Cloning 7, 45–52 (2014).
  • 203 Kebriaei P, Robinson S. Treatment of graft-versus-host-disease with mesenchymal stromal cells. Cytotherapy 13(3), 262–268 (2011).
  • 204 Gratwohl A, Niederwieser D. History of hematopoietic stem cell transplantation: evolution and perspectives. Curr. Probl. Dermatol. 43, 81–90 (2012).
  • 205 Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419), 1439–1441 (2004).
  • 206 Le Blanc K, Frassoni F, Ball L et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624), 1579–1586 (2008).
  • 207 Ringden O, Erkers T, Nava S et al. Fetal membrane cells for treatment of steroid-refractory acute graft-versus-host disease. Stem Cells 31(3), 592–601 (2013).
  • 208 von Bahr L, Sundberg B, Lonnies L et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol. Blood Marrow Transplant. 18(4), 557–564 (2012).
  • 209 Remberger M, Ringden O. Treatment of severe acute graft-versus-host disease with mesenchymal stromal cells: a comparison with non-MSC treated patients. Int. J. Hematol. 96(6), 822–824 (2012).
  • 210 Forslöw U, Blennow O, Leblanc K et al. Treatment with mesenchymal stromal cells is a risk factor for pneumonia-related death after allogeneic hematopoietic stem cell transplantation. Eur. J. Haematol. 89(3), 220–227 (2012).
  • 211 Uhlin M, Wikell H, Sundin M et al. Risk factors for Epstein Barr virus related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation. Haematologica 99(2), 346–352 (2013).
  • 212 Moermans C, Lechanteur C, Baudoux E et al. Impact of cotransplantation of mesenchymal stem cells on lung function after unrelated allogeneic hematopoietic stem cell transplantation following non-myeloablative conditioning. Transplantation 98(3), 348–353 (2014).
  • 213 Uhlin M, Sairafi D, Berglund S et al. Mesenchymal stem cells inhibit thymic reconstitution after allogeneic cord blood transplantation. Stem Cells Dev. 21(9), 1409–1417 (2012).
  • 214 Resnick IB, Barkats C, Shapira MY et al. Treatment of severe steroid resistant acute GVHD with mesenchymal stromal cells (MSC). Am. J. Blood Res. 3(3), 225–238 (2013).
  • 215 Ringden O, Le Blanc K. Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Pract. Res. Clin. Haematol. 24(1), 65–72 (2011).
  • 216 Wernicke CM, Grunewald TG, Juenger H et al. Mesenchymal stromal cells for treatment of steroid-refractory GvHD: a review of the literature and two pediatric cases. Int. Arch. Med. 4(1), 27 (2011).
  • 217 Perez-Simon JA, Lopez-Villar O, Andreu EJ et al. Mesenchymal stem cells expanded in vitro with human serum for the treatment of acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica 96(7), 1072–1076 (2011).
  • 218 Weng JY, Du X, Geng SX et al. Mesenchymal stem cell as salvage treatment for refractory chronic GvHD. Blood Marrow Transplant. 45, 1732–1740 (2010).
  • 219 Ringden O, Keating A. Mesenchymal stromal cells as treatment for chronic GvHD. Blood Marrow Transplant. 46, 163–164 (2011).
  • 220 Baker M. Stem-cell drug fails crucial trials. Nat. Rep. Stem Cells doi:10.1038/news.2009.894 (2009).
  • 221 Prochymal Expanded Access Treatment for Pediatric Patients Who Have Failed Steroids for Acute GvHD. United States National Institute of Health NCT00759018. https://clinicaltrials.gov/ct2/show/NCT00759018.
  • 222 Kurtzberg J, Prockop S, Teira P et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. J. Am. Soc. Blood Marrow Transplant. 20(2), 229–235 (2014).
  • 223 Li MD, Atkins H, Bubela T. The global landscape of stem cell clinical trials. Regen. Med. 9(1), 27–39 (2014).
  • 224 Zheng GP, Ge MH, Shu Q, Rojas M, Xu J. Mesenchymal stem cells in the treatment of pediatric diseases. World J. Pediatr. 9(3), 197–211 (2013).
  • 225 Goodrich AD, Hematti P. Mesenchymal stem cell therapies: the quest for fine-tuning. Exp. Dermatol. 23(9), 632–633 (2014).
  • 226 Graft Versus Host Disease (GVHD) Therapeutics – Pipeline Assessment and Market Forecasts to 2018. (GDHC286PRT). www.clinicaltrials.gov.
  • 227 Clinical Trials. http://clinicaltrials.gov/.
  • 228 Deans R. Regulation, manufacturing and building industry consensus. Regen. Med. 7(6 Suppl.), 78–81 (2012).
  • 229 Report from the Commission to the European Parliament and the Council in accordance with Article 25 of Regulation (EC) No 1394/2007 of the European Parliament and of the Council on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. 28 March. http://ec.europa.eu/health/files/advtherapies/2014_atmp/atmp_en.pdf.
  • 230 Safety Study of MultiStem in Patients With Acute Leukemia, Chronic Myeloid Leukemia, or Myelodysplasia. US National Institute of Health NCT00677859. https://clinicaltrials.gov/ct2/show/NCT00677859.
  • 231 A single-arm Safety Study of Transplantation Using Umbilical Cord Blood and Human Placental-derived Stem Cells From Partially Matched Related Donors in Persons with Certain Malignant Blood Diseases and Non-malignant Disorders (HPDSC). US National Institute of Health NCT00596999. www.clinicaltrials.gov/ct2/show/NCT00596999.
  • 232 Athersys Announces Meeting With FDA to Discuss Advancing Clinical Development of MultiStem for the Prevention of GvHD. Press release 27 April. http://ir.athersys.com/releasedetail.cfm?ReleaseID=668015.
  • 233 Maziarz RT, Devos T, Bachier C et al. Prophylaxis of acute GVHD using multistem stromal cell therapy: preliminary results after administration of single or multiple doses in a phase 1 trial. Biol. Blood Marrow Transplant. 18(2), S264–S265 (2012).
  • 234 Vaes B, Van't Hof W, Deans R, Pinxteren J. Application of MultiStem((R)) Allogeneic Cells for Immunomodulatory Therapy: Clinical Progress and Pre-Clinical Challenges in Prophylaxis for Graft Versus Host Disease. Front. Immunol. 3, 345 (2012).
  • 235 Schulze U, Ringel M. What matters most in commercial success: first-in-class or best-in-class? Nat. Rev. Drug Discov. 12(6), 419–420 (2013).
  • 236 Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 31(10), 890–896 (2003).
  • 237 Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol. 171(7), 3426–3434 (2003).
  • 238 Dazzi F, Van Laar JM, Cope A, Tyndall A. Cell therapy for autoimmune diseases. Arthritis Res. Ther. 9(2), 206 (2007).
  • 239 Levine JE, Logan BR, Wu J et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood 119(16), 3854–3860 (2012).
  • 240 Andrew C, Harris AC, Levine JE, Ferrara JLM. Have we made progress in the treatment of GvHD? Best Pract. Res. Clin. Haematol. 25(4), 473–478 (2012).
  • 241 Paczesny S. Discovery and validation of graft-versus-host disease biomarkers. Blood 121(4), 585–594 (2013).
  • 242 MSCs Combined with CD25 Monoclonal Antibody and Calcineurin Inhibitors for Treatment of Steroid-Resistant aGVHD. United States National Institute of Health NCT02241018. https://clinicaltrials.gov.
  • 243 Esneault E, Pacary E, Eddi D et al. Combined therapeutic strategy using erythropoietin and mesenchymal stem cells potentiates neurogenesis after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 28(9), 1552–1563 (2008).
  • 244 Efficacy and Safety of Prochymal Infusion in Combination With Corticosteroids for the Treatment of Newly Diagnosed Acute GVHD. United States National Institute of Health NCT00562497. https://clinicaltrials.gov/ct2/show/NCT00562497.
  • 245 Umbilical Cord Mesenchymal Stem Cells and Liraglutide in Diabetes Mellitus. United States National Institute of Health NCT01954147. https://clinicaltrials.gov.
  • 246 Cook MM, Futrega K, Osiecki M et al. Micromarrows – three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng. Part C Methods 18(5), 319–328 (2012).
  • 247 Chinnadurai R, Galipeau J. Defining mesenchymal stromal cells responsiveness to IFNγ as a surrogate measure of suppressive potency. Inflamm. Regen. 34(4), 168–175 (2014).
  • 248 Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for Type 1 diabetes. Diabetes 57(7), 1759–1767 (2008).
  • 249 Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 30(8), 1664–1674 (2012).
  • 250 Adorable-Wagan P, Bernal S, Lavilles D, De Vera M. The safety of bone-marrow derived mesenchymal stem cells in patients with Type 2 diabetes mellitus. Cytotherapy 16(4), S82 (2014).
  • 251 Donath MY. Targeting inflammation in the treatment of Type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13(6), 465–476 (2014).
  • 252 ClinicalTrials Database: NCT01576328. https://clinicaltrials.gov/ct2/show/NCT01576328.
  • 253 ClinicalTrials Database: NCT00136903. https://clinicaltrials.gov/ct2/show/NCT00136903.
  • 254 ClinicalTrials Database: NCT00284986. https://clinicaltrials.gov/ct2/show/NCT00284986.
  • 255 ClinicalTrials Database: NCT01318330. https://clinicaltrials.gov/ct2/show/NCT01318330.
  • 256 ClinicalTrials Database: NCT00823316. https://clinicaltrials.gov/ct2/show/NCT00823316.
  • 257 ClinicalTrials Database: NCT01549665. =https://clinicaltrials.gov/ct2/results?term=NCT01549665.
  • 258 ClinicalTrials Database: NCT01222039. https://clinicaltrials.gov/ct2/show/NCT01222039.
  • 259 ClinicalTrials Database: NCT01956903. https://clinicaltrials.gov/ct2/show/NCT01956903.
  • 260 ClinicalTrials Database: NCT00447460. https://clinicaltrials.gov/ct2/show/NCT00447460.
  • 261 ClinicalTrials Database: NCT01764100. https://clinicaltrials.gov/ct2/show/NCT01764100.
  • 262 ClinicalTrials Database: NCT02055625. https://clinicaltrials.gov/ct2/show/NCT02055625.
  • 263 ClinicalTrials Database: NCT00827398. https://clinicaltrials.gov/ct2/show/NCT00827398.
  • 264 ClinicalTrials Database: NCT00524784. https://clinicaltrials.gov/ct2/show/NCT00524784.
  • 265 ClinicalTrials Database: NCT00749164. https://clinicaltrials.gov/ct2/show/NCT00749164.
  • 266 ClinicalTrials Database: NCT01633229. https://clinicaltrials.gov/ct2/show/NCT01633229.
  • 267 ClinicalTrials Database: NCT00361049. https://clinicaltrials.gov/ct2/show/NCT00361049.
  • 268 ClinicalTrials Database: NCT01795573. https://clinicaltrials.gov/ct2/show/NCT01795573.
  • 269 ClinicalTrials Database: NCT00081055. https://clinicaltrials.gov/ct2/show/NCT00081055.
  • 270 ClinicalTrials Database: NCT01589549. https://clinicaltrials.gov/ct2/show/NCT01589549.
  • 271 ClinicalTrials Database: NCT01941394. https://clinicaltrials.gov/ct2/show/NCT01941394.
  • 272 ClinicalTrials Database: NCT01765634. https://clinicaltrials.gov/ct2/show/NCT01765634.
  • 273 ClinicalTrials Database: NCT01765660. https://clinicaltrials.gov/ct2/show/NCT01765660.
  • 274 ClinicalTrials Database: NCT02240992. https://clinicaltrials.gov/ct2/show/NCT02240992.
  • 275 ClinicalTrials Database: NCT01754454. https://clinicaltrials.gov/ct2/show/NCT01754454.
  • 276 ClinicalTrials Database: NCT00972660. https://clinicaltrials.gov/ct2/show/NCT00972660.
  • 277 ClinicalTrials Database: NCT01526850. https://clinicaltrials.gov/ct2/show/NCT01526850.
  • 278 ClinicalTrials Database: NCT00314483. https://clinicaltrials.gov/ct2/show/NCT00314483.
  • 279 ClinicalTrials Database: NCT00504803. https://clinicaltrials.gov/ct2/show/NCT00504803.
  • 280 ClinicalTrials Database: NCT00603330. https://clinicaltrials.gov/ct2/show/NCT00603330.