We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Implications of multipotent mesenchymal stromal cell aging

    Ursula Stochaj

    Department of Physiology, McGill University, McIntyre Medical Sciences Building, Room 1115, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada

    ,
    Mohamed Kodiha

    Department of Physiology, McGill University, McIntyre Medical Sciences Building, Room 1115, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada

    ,
    Dominique Shum-Tim

    Department of Cardiothoracic Surgery, McGill University, The Royal Victoria Hospital, Suite S8-44, 687 Pine Avenue, West, Montreal, Quebec H3A 1A1, Canada

    &
    Inés Colmegna

    * Author for correspondence

    Division of Rheumatology, Department of Medicine, McGill University, The Royal Victoria Hospital, Suite M11-32, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.

    Published Online:https://doi.org/10.2217/rme.13.10

    Aging is defined as the progressive and generalized impairment of function, resulting in an increasing vulnerability to environmental challenges and a growing risk of disease and death. The decline in the regenerative capacity of resident stem cells across different tissues is a central mediator of aging. In this paper we review the evidence implicating multipotent mesenchymal stromal cells as being subject to and causes of tissue and organismal aging. We specifically discuss the nuclear changes that occur in the context of Hutchinson–Gilford progeria syndrome, a premature aging syndrome that preferentially affects tissues of mesenchymal origin.

    References

    • Sharpless NE, Depinho RA. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol.8(9),703–713 (2007).
    • Conboy IM, Rando TA. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle11(12),2260–2267 (2012).
    • Nagaria P, Robert C, Rassool FV. DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity. Biochim. Biophys. Acta1830(2),2345–2353 (2012).
    • Beausejour CM, Campisi J. Ageing: balancing regeneration and cancer. Nature443(7110),404–405 (2006).
    • Rodier F, Campisi J. Four faces of cellular senescence. J. Cell Biol.192(4),547–556 (2011).
    • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev.24(22),2463–2479 (2010).
    • Liu Y, Johnson SM, Fedoriw Y et al. Expression of p16(ink4a) prevents cancer and promotes aging in lymphocytes. Blood117(12),3257–3267 (2011).
    • Dominici M, le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8(4),315–317 (2006).
    • Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol.4(5),267–274 (1976).
    • 10  Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell10(6),709–716 (2012).
    • 11  Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411),143–147 (1999).
    • 12  Macdonald GI, Augello A, de Bari C. Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum.63(9),2547–2557 (2011).
    • 13  Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol.6,457–478 (2011).
    • 14  le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol.12(5),383–396 (2012).
    • 15  Campisi J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. doi:10.1146/annurev-physiol-030212-183653 (2012) (Epub ahead of print).
    • 16  Lepperdinger G. Inflammation and mesenchymal stem cell aging. Curr. Opin. Immunol.23(4),518–524 (2011).
    • 17  Voog J, Jones DL. Stem cells and the niche: a dynamic duo. Cell Stem Cell6(2),103–115 (2010).
    • 18  Fossett E, Khan WS, Pastides P, Adesida AB. The effects of ageing on proliferation potential, differentiation potential and cell surface characterisation of human mesenchymal stem cells. Curr. Stem Cell Res. Ther.7(4),282–286 (2012).
    • 19  Cmielova J, Havelek R, Soukup T et al. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int. J. Radiat. Biol.88(5),393–404 (2012).
    • 20  Schellenberg A, Stiehl T, Horn P et al. Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy14(4),401–411 (2012).
    • 21  Wagner W, Bork S, Lepperdinger G et al. How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY)2(4),224–230 (2010).
    • 22  Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev.129(3),163–173 (2008).
    • 23  Shen J, Tsai YT, Dimarco NM, Long MA, Sun X, Tang L. Transplantation of mesenchymal stem cells from young donors delays aging in mice. Sci. Rep.1,67 (2011).
    • 24  Wagner W, Horn P, Castoldi M et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One3(5),e2213 (2008).
    • 25  Bork S, Pfister S, Witt H et al. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell9(1),54–63 (2010).
    • 26  Zhou S, Greenberger JS, Epperly MW et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell7(3),335–343 (2008).
    • 27  Brohlin M, Kingham PJ, Novikova LN, Novikov LN, Wiberg M. Aging effect on neurotrophic activity of human mesenchymal stem cells. PLoS One7(9),e45052 (2012).
    • 28  Cheleuitte D, Mizuno S, Glowacki J. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J. Clin. Endocrinol. Metab.83(6),2043–2051 (1998).
    • 29  Makhluf HA, Mueller SM, Mizuno S, Glowacki J. Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem. Biophys. Res. Commun.268(3),669–672 (2000).
    • 30  Geng S, Zhou S, Glowacki J. Age-related decline in osteoblastogenesis and 1alpha-hydroxylase/cyp27b1 in human mesenchymal stem cells: stimulation by parathyroid hormone. Aging Cell10(6),962–971 (2011).
    • 31  Laschober GT, Brunauer R, Jamnig A et al. Age-specific changes of mesenchymal stem cells are paralleled by upregulation of CD106 expression as a response to an inflammatory environment. Rejuvenation Res.14(2),119–131 (2011).
    • 32  Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W. Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell11(2),366–369 (2012).
    • 33  Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res.102(11),1319–1330 (2008).
    • 34  Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat. Rev. Mol. Cell Biol.8(9),692–702 (2007).
    • 35  Finley LW, Haigis MC. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res. Rev.8(3),173–188 (2009).
    • 36  Jones DL, Rando TA. Emerging models and paradigms for stem cell ageing. Nat. Cell Biol.13(5),506–512 (2011).
    • 37  Dreesen O, Stewart CL. Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany NY)3(9),889–895 (2011).
    • 38  Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol.10(4),452–459 (2008).
    • 39  Minamino T, Komuro I. Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nat. Clin. Pract. Cardiovasc. Med.5(10),637–648 (2008).
    • 40  Burtner CR, Kennedy BK. Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol.11(8),567–578 (2010).
    • 41  Butin-Israeli V, Adam SA, Goldman AE, Goldman RD. Nuclear lamin functions and disease. Trends Genet.28(9),464–471 (2011).
    • 42  Musich PR, Zou Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany NY)1(1),28–37 (2009).
    • 43  Smith JA, Ndoye AM, Geary K, Lisanti MP, Igoucheva O, Daniel R. A role for the werner syndrome protein in epigenetic inactivation of the pluripotency factor oct4. Aging Cell9(4),580–591 (2010).
    • 44  Coppede F. Premature aging syndrome. Adv. Exp. Med. Biol.724,317–331 (2012).
    • 45  Shin DM, Kucia M, Ratajczak MZ. Nuclear and chromatin reorganization during cell senescence and aging - a mini-review. Gerontology57(1),76–84 (2011).
    • 46  Benson EK, Lee SW, Aaronson SA. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J. Cell Sci.123(Pt 15),2605–2612 (2010).
    • 47  Muftuoglu M, Oshima J, Von Kobbe C, Cheng WH, Leistritz DF, Bohr VA. The clinical characteristics of werner syndrome: molecular and biochemical diagnosis. Hum. Genet.124(4),369–377 (2008).
    • 48  Worman HJ. Nuclear lamins and laminopathies. J. Pathol.226(2),316–325 (2012).
    • 49  Bohr VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci.33(12),609–620 (2008).
    • 50  Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. ATM protein kinase: the linchpin of cellular defenses to stress. Cell. Mol. Life Sci.68(18),2977–3006 (2011).
    • 51  Mason PJ, Bessler M. The genetics of dyskeratosis congenita. Cancer Genet.204(12),635–645 (2011).
    • 52  Batista LF, Pech MF, Zhong FL et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature474(7351),399–402 (2011).
    • 53  Liu GH, Barkho BZ, Ruiz S et al. Recapitulation of premature ageing with IPSCs from Hutchinson–Gilford progeria syndrome. Nature472(7342),221–225 (2011).
    • 54  Alves H, van Ginkel J, Groen N et al. A mesenchymal stromal cell gene signature for donor age. PLoS One7(8),e42908 (2012).
    • 55  Zhang J, Lian Q, Zhu G et al. A human IPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell8(1),31–45 (2011).
    • 56  Niedernhofer LJ, Glorioso JC, Robbins PD. Dedifferentiation rescues senescence of progeria cells but only while pluripotent. Stem Cell Res. Ther.2(3),28 (2011).
    • 57  Andres V, Gonzalez JM. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol.187(7),945–957 (2009).
    • 58  Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu. Rev. Genomics Hum. Genet.7,369–405 (2006).
    • 59  Bar DZ, Gruenbaum Y. Reversal of age-dependent nuclear morphology by inhibition of prenylation does not affect lifespan in Caenorhabditis elegans. Nucleus1(6),499–505 (2010).
    • 60  Zhang H, Kieckhaefer JE, Cao K. Mouse models of laminopathies. Aging Cell12(1),2–10 (2012).
    • 61  Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA103(27),10271–10276 (2006).
    • 62  Chen CY, Chi YH, Mutalif RA et al. Accumulation of the inner nuclear envelope protein sun1 is pathogenic in progeric and dystrophic laminopathies. Cell149(3),565–577 (2012).
    • 63  Haque F, Mazzeo D, Patel JT et al. Mammalian sun protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J. Biol. Chem.285(5),3487–3498 (2010).
    • 64  Kelley JB, Datta S, Snow CJ et al. The defective nuclear lamina in Hutchinson–Gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol. Cell. Biol.31(16),3378–3395 (2011).
    • 65  Busch A, Kiel T, Heupel WM, Wehnert M, Hubner S. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants. Exp. Cell Res.315(14),2373–2385 (2009).
    • 66  Pujol G, Soderqvist H, Radu A. Age-associated reduction of nuclear protein import in human fibroblasts. Biochem. Biophys. Res. Commun.294(2),354–358 (2002).
    • 67  Allsopp RC, Vaziri H, Patterson C et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89(21),10114–10118 (1992).
    • 68  Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science312(5776),1059–1063 (2006).
    • 69  Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat. Med.11(4),440–445 (2005).
    • 70  Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T. Ageing-related chromatin defects through loss of the nurd complex. Nat. Cell Biol.11(10),1261–1267 (2009).
    • 71  Alt EU, Senst C, Murthy SN et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res.8(2),215–225 (2012).
    • 72  Urs S, Turner B, Tang Y, Rostama B, Small D, Liaw L. Effect of soluble jagged1-mediated inhibition of notch signaling on proliferation and differentiation of an adipocyte progenitor cell model. Adipocyte1(1),46–57 (2012).
    • 73  Huang Y, Yang X, Wu Y et al. Gamma-secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of notch and PPAR-gamma. Cell Prolif.43(2),147–156 (2010).
    • 74  Wenzel V, Roed D, Gabriel D. Naive adult stem cells from patients with Hutchinson–Gilford progeria syndrome express low levels of progerin in vivo. Biology Open1(6),516–526 (2012).
    • 75  Olive M, Harten I, Mitchell R et al. Cardiovascular pathology in Hutchinson-Gilford progeria. correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol.30(11),2301–2309 (2010).
    • 76  Ragnauth CD, Warren DT, Liu Y et al. Prelamin a acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation121(20),2200–2210 (2010).
    • 77  McClintock D, Ratner D, Lokuge M et al. The mutant form of lamin a that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One2(12),e1269 (2007).
    • 78  Bokenkamp R, Raz V, Venema A et al. differential temporal and spatial progerin expression during closure of the ductus arteriosus in neonates. PLoS One6(9),e23975 (2011).
    • 79  Schuringa JJ, Vellenga E. Role of the polycomb group gene bmi1 in normal and leukemic hematopoietic stem and progenitor cells. Curr. Opin. Hematol.17(4),294–299 (2010).
    • 80  Schellenberg A, Lin Q, Schuler H et al. Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY)3(9),873–888 (2011).
    • 81  Pollina EA, Brunet A. Epigenetic regulation of aging stem cells. Oncogene30(28),3105–3126 (2011).
    • 82  Klotz B, Mentrup B, Regensburger M et al. 1,25-dihydroxyvitamin d3 treatment delays cellular aging in human mesenchymal stem cells while maintaining their multipotent capacity. PLoS One7(1),e29959 (2012).
    • 83  Breu A, Sprinzing B, Merkl K et al. Estrogen reduces cellular aging in human mesenchymal stem cells and chondrocytes. J. Orthop. Res.29(10),1563–1571 (2011).
    • 84  Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature433(7027),760–764 (2005).
    • 85  Edelberg JM, Tang L, Hattori K, Lyden D, Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res.90(10),e89–e93 (2002).
    • 86  Rigbolt KT, Prokhorova TA, Akimov V et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal.4(164),rs3 (2011).
    • 87  Verstraeten VL, Peckham LA, Olive M et al. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc. Natl Acad. Sci. USA108(12),4997–5002 (2011).
    • 88  Cao K, Graziotto JJ, Blair CD et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci. Transl. Med.3(89),89ra58 (2011).