We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A ‘one stone, two birds’ approach with mesenchymal stem cells for acute respiratory distress syndrome and Type II diabetes mellitus

    Mogesh Sababathy

    Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Ghayathri Ramanathan

    Faculty of Computer Science & Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia

    ,
    Nor Yasmin Abd Rahaman

    Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    Laboratory of Vaccines & Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Rajesh Ramasamy

    Department of Pathology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Foo Jhi Biau

    Centre for Drug Discovery & Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, Selangor, Subang Jaya, 47500, Malaysia

    School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Selangor, Subang Jaya, 47500, Malaysia

    ,
    Daniel Looi Qi Hao

    My Cytohealth Sdn. Bhd., 18-2, Jalan Radin Bagus 1, Bandar Seri Petaling, Kuala Lumpur, 57000, Malaysia

    &
    Nur-Fazila Saulol Hamid

    *Author for correspondence:

    E-mail Address: nurfazila@upm.edu.my

    Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    Laboratory of Vaccines & Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    Published Online:https://doi.org/10.2217/rme-2023-0193

    This review explores the intricate relationship between acute respiratory distress syndrome (ARDS) and Type II diabetes mellitus (T2DM). It covers ARDS epidemiology, etiology and pathophysiology, along with current treatment trends and challenges. The lipopolysaccharides (LPS) role in ARDS and its association between non-communicable diseases and COVID-19 are discussed. The review highlights the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for ARDS and T2DM, emphasizing their immunomodulatory effects. This review also underlines how T2DM exacerbates ARDS pathophysiology and discusses the potential of hUC-MSCs in modulating immune responses. In conclusion, the review highlights the multidisciplinary approach to managing ARDS and T2DM, focusing on inflammation, oxidative stress and potential therapy of hUC-MSCs in the future.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Fröhlich E. Therapeutic potential of mesenchymal stem cells and their products in lung diseases – intravenous administration versus inhalation. Pharmaceutics 13(2), 232 (2021).
    • 2. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol. Therap. 27(1), 25–33 (2019).
    • 3. Moll G, Ankrum JA, Kamhieh-Milz J et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol. Med. 25(2), 149–163 (2019).
    • 4. Moll G, Ankrum JA, Olson SD, Nolta JA. Improved MSC minimal criteria to maximize patient safety: a call to embrace tissue factor and hemocompatibility assessment of MSC products. Stem Cells Transl. Med. 11(1), 2–13 (2022).
    • 5. Zhu H, Xiong Y, Xia Y et al. Therapeutic effects of human umbilical cord-derived mesenchymal stem cells in acute lung injury mice. Sci. Rep. 7(1), 39889 (2017).
    • 6. Mastrolia I, Foppiani EM, Murgia A et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl. Med. 8(11), 1135–1148 (2019).
    • 7. Dabrowski FA, Burdzinska A, Kulesza A et al. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue: paracrine activity of human fetal MSCs. J. Obstet. Gynaecol. Res. 43(11), 1758–1768 (2017).
    • 8. He Y, Guo X, Lan T et al. Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat3 signaling. Stem Cell Res. Ther. 12(1), 396 (2021).
    • 9. Li S, Zhu H, Zhao M et al. When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Res. Ther. 13(1), 9 (2022).
    • 10. Mebarki M, Abadie C, Larghero J, Cras A. Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products. Stem Cell Res. Ther. 12(1), 152 (2021).
    • 11. Xie Q, Liu R, Jiang J et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res. Ther. 11(1), 519 (2020).
    • 12. Divya MS, Roshin GE, Divya TS et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res. Ther. 3(6), 57 (2012).
    • 13. Velarde F, Castañeda V, Morales E et al. Use of human umbilical cord and its byproducts in tissue regeneration. Front. Bioeng. Biotechnol. 8, 117 (2020).
    • 14. Vilalta M, Dégano IR, Bagó J et al. Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells Develop. 17(5), 993–1004 (2008).
    • 15. Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science 306(5701), 1568–1571 (2004).
    • 16. Volarevic V, Markovic BS, Gazdic M et al. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 15(1), 36–45 (2018).
    • 17. Chang YS, Choi SJ, Ahn SY et al. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLOS ONE 8(1), e52419 (2013).
    • 18. Moodley Y, Atienza D, Manuelpillai U et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am. J. Pathol. 175(1), 303–313 (2009).
    • 19. Harrell CR, Sadikot R, Pascual J et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: current understanding and future perspectives. Stem Cells Int. 2019, 1–14 (2019).
    • 20. Ryu JS, Jeong EJ, Kim JY et al. Application of mesenchymal stem cells in inflammatory and fibrotic diseases. IJMS. 21(21), 8366 (2020).
    • 21. Hong SY, Teng SW, Lin W, Wang CY, Lin HI. Allogeneic human umbilical cord-derived mesenchymal stem cells reduce lipopolysaccharide-induced inflammation and acute lung injury. Am. J. Transl. Res. 12(10), 6740–6750 (2020).
    • 22. Yu QY, Tang XX. Versibility of pulmonary fibrosis. Ag. Dis. 13(1), 73 (2022).
    • 23. Jerkic M, Szaszi K, Laffey JG, Rotstein O, Zhang H. Key role of mesenchymal stromal cell interaction with macrophages in promoting repair of lung injury. IJMS. 24(4), 3376 (2023).
    • 24. Gallelli L, Zhang L, Wang T, Fu F. Severe acute lung injury related to COVID-19 infection: a review and the possible role for escin. J. Clin. Pharmacol. 60(7), 815–825 (2020).
    • 25. Tsikis ST, Fligor SC, Hirsch TI et al. Lipopolysaccharide-induced murine lung injury results in long-term pulmonary changes and downregulation of angiogenic pathways. Sci. Rep. 12(1), 10245 (2022).
    • 26. Siuba MT, Sadana D, Gadre S, Bruckman D, Duggal A. Acute respiratory distress syndrome readmissions: a nationwide cross-sectional analysis of epidemiology and costs of care. PLOS ONE 17(1), e0263000 (2022).
    • 27. Matthay MA, Zemans RL, Zimmerman GA et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 5(1), 18 (2019).
    • 28. Lei L, Guo Y, Lin J et al. Inhibition of endotoxin-induced acute lung injury in rats by bone marrow–derived mesenchymal stem cells: role of NRF2/HO-1 signal axis in inhibition of NLRP3 activation. Biochem. Biophys. Res. Commun. 551, 7–13 (2021).
    • 29. Verjans E, Kanzler S, Ohl K et al. Initiation of LPS-induced pulmonary dysfunction and its recovery occur independent of T cells. BMC Pulm. Med. 18(1), 174 (2018).
    • 30. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front. Immunol. 11, 1722 (2020).
    • 31. Yang SC, Tsai YF, Pan YL, Hwang TL. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomed. J. 44(4), 439–446 (2021).
    • 32. Martins JO, Zanoni FL, Martins DO et al. Insulin regulates cytokines and intercellular adhesion molecule-1 gene expression through Nuclear Factor-κb activation in LPS-induced acute lung injury in rats. Shock 31(4), 404–409 (2009).
    • 33. Couto PS, Al-Arawe N, Filgueiras IS et al. Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery. Front. Immunol. 14, 1200180 (2023).
    • 34. Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal stromal cells for enhancing hematopoietic engraftment and treatment of graft-versus-host disease, hemorrhages and acute respiratory distress syndrome. Front. Immunol. 13, 839844 (2022).
    • 35. Moll G, Drzeniek N, Kamhieh-Milz J, Geissler S, Volk H-D, Reinke P. MSC therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front. Immunol. 11, 1091 (2020).
    • 36. Chandran A, Selva Kumar S, Hairi NN, Low WY, Mustapha FI. Non-communicable disease surveillance in malaysia: an overview of existing systems and priorities going forward. Front. Public Health. 9, 698741 (2021).
    • 37. Hoang DM, Pham PT, Bach TQ et al. Stem cell-based therapy for human diseases. Sig. Transduct. Target Ther. 7(1), 272 (2022).
    • 38. Zhang J, Qu X, Li J et al. Tissue sheet engineered using human umbilical cord-derived mesenchymal stem cells improves diabetic wound healing. IJMS. 23(20), 12697 (2022).
    • 39. Cutts S, Talboys R, Paspula C, Ail D, Premphe EM, Fanous R. History of acute respiratory distress syndrome. Lancet Respir. Med. 4(7), 547–548 (2016).
    • 40. Fanelli V, Vlachou A, Ghannadian S, Simonetti U, Slutsky AS, Zhang H. Acute respiratory distress syndrome: new definition, current and future therapeutic options. J. Thorac. Dis. 5(3), 326–334 (2013). • The widely accepted Berlin criteria definition of acute respiratory distress syndrome (ARDS) clinical guideline for diagnosing and classifying ARDS.
    • 41. Rubenfeld GD, Caldwell E, Peabody E et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353(16), 1685–1693 (2005).
    • 42. Frutos-Vivar F, Nin N, Esteban A. Epidemiology of acute lung injury and acute respiratory distress syndrome. Curr. Opin. Critic. Care 10(1), 1–6 (2004).
    • 43. Bellani G, Laffey JG, Pham T et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8), 788 (2016).
    • 44. Siegel MD. Acute respiratory distress syndrome: epidemiology, pathophysiology, pathology, and etiology in adults. UpToDate, Waltham, MA, USA. •• Important review describing the epidemiology, pathophysiology, pathology and etiology of ARDS in adults.
    • 45. Aslan A, Aslan C, Zolbanin NM, Jafari R. Acute respiratory distress syndrome in COVID-19: possible mechanisms and therapeutic management. Pneumonia 13(1), 14 (2021).
    • 46. Krynytska I, Marushchak M, Birchenko I, Dovgalyuk A, Tokarskyy O. COVID-19-associated acute respiratory distress syndrome versus classical acute respiratory distress syndrome (a narrative review). Iran J. Microbiol. 13(6), 737–747 (2021).
    • 47. Valente Barbas CS, Marini Isola A, Baldisserotto S. Worsening COVID-19 acute respiratory distress syndrome: pneumomediastinum? Crit. Care Med. 51(1), 145–148 (2023).
    • 48. Yang X, Yu Y, Xu J et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8(5), 475–481 (2020).
    • 49. Grasselli G, Zangrillo A, Zanella A et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 323(16), 1574–1581 (2020).
    • 50. Gupta S, Hayek SS, Wang W et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern. Med. 180(11), 1436 (2020).
    • 51. Bersten AD, Edibam C, Hunt T, Moran J. Australian and New Zealand Intensive Care Society Clinical Trials Group. Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian states. Am. J. Respir. Crit. Care Med. 165(4), 443–448 (2002).
    • 52. Hendrickson KW, Peltan ID, Brown SM. The epidemiology of acute respiratory distress syndrome before and after coronavirus disease 2019. Crit. Care Clin. 37(4), 703–716 (2021).
    • 53. Hoelz C, Negri EM, Lichtenfels AJ et al. Morphometric differences in pulmonary lesions in primary and secondary ARDS. A preliminary study in autopsies. Pathol. Res. Pract. 197(8), 521–530 (2001).
    • 54. Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC. Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit. Care Med. 33(6), 1191–1198 (2005).
    • 55. Calfee CS, Matthay MA, Kangelaris KN et al. Cigarette smoke exposure and the acute respiratory distress syndrome. Crit. Care Med. 43(9), 1790–1797 (2015).
    • 56. Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol. Lett. 222(2), 171–179 (2013).
    • 57. Moss M, Guidot DM, Steinberg KP et al. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit. Care Med. 28(7), 2187–2192 (2000).
    • 58. Piantadosi CA, Schwartz DA. The acute respiratory distress syndrome. Ann. Intern. Med. 141(6), 460 (2004).
    • 59. Swenson KE, Swenson ER. Pathophysiology of acute respiratory distress syndrome and COVID-19 lung injury. Crit. Care Clin. 37(4), 749–776 (2021).
    • 60. Griffiths MJD, McAuley DF, Perkins GD et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Resp. Res. 6(1), e000420 (2019).
    • 61. Beitler JR, Sarge T, Banner-Goodspeed VM et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure–guided strategy vs an empirical high PEEP-FIO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 321(9), 846 (2019).
    • 62. Kacmarek RM, Villar J, Sulemanji D et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit. Care Med. 44(1), 32–42 (2016).
    • 63. Nanchal RS, Truwit JD. Recent advances in understanding and treating acute respiratory distress syndrome. F1000Res. 7, 1322 (2018).
    • 64. Peck TJ, Hibbert KA. Recent advances in the understanding and management of ARDS. F1000Res. 8, 1959 (2019).
    • 65. Sud S, Friedrich JO, Taccone P et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 36(4), 585–599 (2010).
    • 66. Papazian L, Forel JM, Gacouin A et al. Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 363(12), 1107–1116 (2010).
    • 67. Mallick S, Chatterjee A, Basunia S, Bisui B. Successful resuscitation in a case of sudden cardiac arrest in an epileptic patient posted for spinal surgery. Anesth Essays Res. 7(1), 123 (2013).
    • 68. Rezoagli E, Fumagalli R, Bellani G. Definition and epidemiology of acute respiratory distress syndrome. Ann. Transl. Med. 5(14), 282–282 (2017).
    • 69. Wick KD, McAuley DF, Levitt JE et al. Promises and challenges of personalized medicine to guide ARDS therapy. Crit. Care. 25(1), 404 (2021).
    • 70. Bennett JE, Dolin R, Blaser MJ. Mandell, douglas, and bennett's principles and practice of infectious diseases Elsevier health sciences, E-book.
    • 71. Rietschel ET, Kirikae T, Schade FU et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8(2), 217–225 (1994).
    • 72. Menezes SLS, Bozza PT, Faria Neto HCC et al. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J. Appl. Physiol. 98(5), 1777–1783 (2005).
    • 73. Bozinovski S, Jones J, Beavitt S-J, Cook AD, Hamilton JA, Anderson GP. Innate immune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4. Am. J. Physiol. Lung Cell. Mol. Physiol. 286(4), L877–L885 (2004).
    • 74. Matute-Bello G, Downey G, Moore BB et al. An official american thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44(5), 725–738 (2011).
    • 75. Glasser SW, Witt TL, Senft AP et al. Surfactant protein C-deficient mice are susceptible to respiratory syncytial virus infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(1), L64–L72 (2009).
    • 76. Bastarache JA, Fremont RD, Kropski JA, Bossert FR, Ware LB. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(6), L1035–L1041 (2009).
    • 77. Chen XY, Chen KY, Feng PH et al. YAP-regulated type II alveolar epithelial cell differentiation mediated by human umbilical cord-derived mesenchymal stem cells in acute respiratory distress syndrome. Biomed. Pharmacother. 159, 114302 (2023).
    • 78. Domscheit H, Hegeman MA, Carvalho N, Spieth PM. Molecular dynamics of lipopolysaccharide-induced lung injury in rodents. Front. Physiol. 11, 36 (2020).
    • 79. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am. J. Physiol.-Lung Cellular and Mol. Physiol. 295(3), L379–L399 (2008).
    • 80. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 42(2), 145–151 (2008).
    • 81. Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 Cells upon LPS activation. PLOS ONE 10(4), e0122529 (2015).
    • 82. Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Commun. Signal. 19(1), 10 (2021).
    • 83. Lee S, Syed N, Taylor J et al. DUSP16 is an epigenetically regulated determinant of JNK signaling in Burkitt's lymphoma. Br. J. Cancer 103(2), 265–274 (2010).
    • 84. Zhang H, Zheng H, Mu W et al. DUSP16 ablation arrests the cell cycle and induces cellular senescence. FEBS J. 282(23), 4580–4594 (2015).
    • 85. Wassenaar TM, Zimmermann K. Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur. J. Microbiol. Immunol. 8(3), 63–69 (2018).
    • 86. Kim W-Y, Hong S-B. Sepsis and acute respiratory distress syndrome: recent update. Tuberc. Respir. Dis. 79(2), 53 (2016).
    • 87. Wang HE, Griffin R, Judd S, Shapiro NI, Safford MM. Obesity and risk of sepsis: a population-based cohort study: obesity and risk of sepsis. Obesity. 21(12), E762–E769 (2013).
    • 88. Yu S, Christiani DC, Thompson BT, Bajwa EK, Gong MN. Role of diabetes in the development of acute respiratory distress syndrome. Crit. Care Med. 41(12), 2720–2732 (2013).
    • 89. Stenlo M, Hyllén S, Silva IAN et al. Increased particle flow rate from airways precedes clinical signs of ARDS in a porcine model of LPS-induced acute lung injury. Am. J. Physiol.-Lung Cell. Mol. Physiol. 318(3), L510–L517 (2020).
    • 90. Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP. Causes and timing of death in patients with ARDS. Chest 128(2), 525–532 (2005).
    • 91. Dewulf EM, Cani PD, Claus SP et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8), 1112–1121 (2013).
    • 92. Parnell JA, Klancic T, Reimer RA. Oligofructose decreases serum lipopolysaccharide and plasminogen activator inhibitor-1 in adults with overweight/obesity: oligofructose and inflammation in obesity. Obesity 25(3), 510–513 (2017).
    • 93. Karimi P, Farhangi MA, Sarmadi B et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with Type II diabetes: a randomized controlled clinical trial. Ann. Nutr. Metab. 68(2), 85–93 (2016).
    • 94. Salazar N, Dewulf EM, Neyrinck AM et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutri. 34(3), 501–507 (2015).
    • 95. Ferguson JF, Mulvey CK, Patel PN et al. Omega-3 PUFA supplementation and the response to evoked endotoxemia in healthy volunteers. Mol. Nutr. Food Res. 58(3), 601–613 (2014).
    • 96. Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 5(1), 11276 (2015).
    • 97. Gholamnezhad Z, Safarian B, Esparham A, Mirzaei M, Esmaeilzadeh M, Boskabady MH. The modulatory effects of exercise on lipopolysaccharide-induced lung inflammation and injury: a systemic review. Life Sci. 293, 120306 (2022).
    • 98. Wang X, Wang Z, Tang D. Aerobic exercise improves LPS-induced sepsis via regulating the Warburg effect in mice. Sci. Rep. 11(1), 17772 (2021).
    • 99. Rovina N, Koutsoukou A, Koulouris N. Therapeutic exercise in improving acute lung injury: a long distance to be covered. Ann. Transl. Med. 3(18), 273 (2015).
    • 100. Rigonato-Oliveira NC, Mackenzie B, Bachi ALL et al. Aerobic exercise inhibits acute lung injury: from mouse to human evidence exercise reduced lung injury markers in mouse and in cells. Exerc. Immunol. Rev. 24, 36–44 (2018).
    • 101. Ronco C, Bagshaw SM, Bellomo R et al. Extracorporeal blood purification and organ support in the critically ill patient during COVID-19 pandemic: expert review and recommendation. Blood Purif. 50(1), 17–27 (2021).
    • 102. Basoli V, Chaudary S, Cruciani S et al. Mechanical stimulation of fibroblasts by extracorporeal shock waves: modulation of cell activation and proliferation through a transient proinflammatory milieu. Cell Transplant. 29, 096368972091617 (2020).
    • 103. Mehta Y, Paul R, Ansari AS et al. Extracorporeal blood purification strategies in sepsis and septic shock: an insight into recent advancements. World J. Crit. Care Med. 12(2), 71–88 (2023).
    • 104. Rey S, Kulabukhov VM, Popov A et al. Hemoperfusion using the LPS-selective mesoporous polymeric adsorbent in septic shock: a multicenter randomized clinical trial. Shock. 59(6), 846–854 (2023).
    • 105. Lerman I, Hauger R, Sorkin L et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation: Technology at the Neural Interface. 19(3), 283–291 (2016).
    • 106. Pal R, Bhadada SK. COVID-19 and diabetes mellitus: an unholy interaction of two pandemics. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 14(4), 513–517 (2020).
    • 107. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl. 1), S62–S69 (2011).
    • 108. Honiden S, Gong MN. Diabetes, insulin, and development of acute lung injury. Crit. Care Med. 37(8), 2455–2464 (2009).
    • 109. Landstra CP, De Koning EJP. COVID-19 and diabetes: understanding the interrelationship and risks for a severe course. Front. Endocrinol. 12, 649525 (2021).
    • 110. Tamura RE, Said SM, De Freitas LM, Rubio IGS. Outcome and death risk of diabetes patients with COVID-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab. Syndr. 13(1), 76 (2021).
    • 111. Onyango EM, Onyango BM. The rise of noncommunicable diseases in kenya: an examination of the time trends and contribution of the changes in diet and physical inactivity. JEGH. 8(1–2), 1 (2018).
    • 112. Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: an overview. JEGH. 7(4), 211 (2017).
    • 113. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type II diabetes - global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 10(1), 107–111 (2020).
    • 114. Javeed N, Matveyenko AV. Circadian etiology of Type II diabetes mellitus. Physiol. 33(2), 138–150 (2018).
    • 115. Wilding JPH. The importance of weight management in Type II diabetes mellitus. Int. J. Clin. Pract. 68(6), 682–691 (2014).
    • 116. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 148(5), 852–871 (2012).
    • 117. Galicia-Garcia U, Benito-Vicente A, Jebari S et al. Pathophysiology of Type II diabetes mellitus. IJMS. 21(17), 6275 (2020).
    • 118. Bellou V, Belbasis L, Tzoulaki I, Evangelou E. Risk factors for Type II diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLOS ONE. 13(3), e0194127 (2018).
    • 119. Hamasaki H. Daily physical activity and Type II diabetes: a review. WJD. 7(12), 243 (2016).
    • 120. Shalahuddin I, Maulana I, Pebrianti S, Eriyani T. Blood sugar levels regulation in diabetes mellitus Type II patients through diet management. J. Sci. n.a [Internet]. 7(2), (2022). Available from: https://aisyah.journalpress.id/index.php/jika/article/view/7210
    • 121. Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in Type II diabetes: implications for therapy. Diabetes 59(11), 2697–2707 (2010).
    • 122. Hotamisligil GS. Inflammation and metabolic disorders. Nature 444(7121), 860–867 (2006).
    • 123. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type II diabetes and its impact on the immune system. CDR. 16(5), 442–449 (2020).
    • 124. Boyle AJ, Madotto F, Laffey JG et al. Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Crit. Care. 22(1), 268 (2018).
    • 125. Gu WJ, Wan YD, Tie HT, Kan QC, Sun TW. Risk of acute lung injury/acute respiratory distress syndrome in critically ill adult patients with pre-existing diabetes: a meta-analysis. PLOS ONE. 9(2), e90426 (2014).
    • 126. Ji M, Chen M, Hong X, Chen T, Zhang N. The effect of diabetes on the risk and mortality of acute lung injury/acute respiratory distress syndrome: a meta-analysis. Medicine (Baltimore). 98(13), e15095 (2019).
    • 127. Khateeb J, Fuchs E, Khamaisi M. Diabetes and lung disease: an underestimated relationship. Rev. Diabetic Studies 15(1), 1–15 (2019). •• Excellent review discussing the implications of diabetes for lung diseases.
    • 128. Fuso L, Pitocco D, Longobardi A et al. Reduced respiratory muscle strength and endurance in Type II diabetes mellitus: respiratory muscle function in diabetes. Diabetes Metab. Res. Rev. 28(4), 370–375 (2012).
    • 129. Vojtková J, Ciljaková M, Michnová Z, Turčan T. Chronic complications of diabetes mellitus related to the respiratory system. Pediatr. Endocrinol. Diabetes Metab. 18(3), 112–115 (2012).
    • 130. Kolahian S, Leiss V, Nürnberg B. Diabetic lung disease: fact or fiction? Rev. Endocr. Metab. Disord. 20(3), 303–319 (2019).
    • 131. Goldman MD. Lung dysfunction in diabetes. Diabetes Care 26(6), 1915–1918 (2003).
    • 132. Hsia CCW, Raskin P. Lung function changes related to diabetes mellitus. Diabetes Technology & Therapeutics. 9(Suppl. 1), S73–S82 (2007). •• Key information on the changes in lung function observed in diabetes.
    • 133. Bornstein SR, Rubino F, Khunti K et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes & Endocrinol. 8(6), 546–550 (2020).
    • 134. Shukla AK, Banerjee M. Angiotensin-converting-enzyme 2 and renin-angiotensin system inhibitors in COVID-19: an update. High Blood Press Cardiovasc. Prev. 28(2), 129–139 (2021).
    • 135. Madhu SV. Post COVID-19 diabetes care – lessons and challenges. Int. J. Diabetes Dev. Ctries. 40(2), 155–157 (2020).
    • 136. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res. Clin. Pract. 162, 108132 (2020).
    • 137. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 10(1), 68 (2019).
    • 138. McElreavey KD, Irvine AI, Ennis KT, McLean WH. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem. Soc. Trans. 19(1), S29 (1991).
    • 139. Hassan G, Kasem I, Antaki R, Mohammad MB, AlKadry R, Aljamali M. Isolation of umbilical cord mesenchymal stem cells using human blood derivatives accompanied with explant method. Stem Cell Investig. 6, 28–28 (2019).
    • 140. Li DR, Cai JH. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin. Med. J. (Engl). 125(24), 4504–4510 (2012).
    • 141. Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan C. Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. IJMS. 14(6), 11692–11712 (2013).
    • 142. Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the wharton's jelly of the human umbilical cord. Stem Cell Rev. and Rep. 9(2), 226–240 (2013).
    • 143. Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Front. Immunol. 11, 591065 (2021).
    • 144. Bronckaers A, Hilkens P, Martens W et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacology & Therapeutics. 143(2), 181–196 (2014).
    • 145. Shu L, Niu C, Li R et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 11(1), 361 (2020).
    • 146. Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell. 11(10), 707–722 (2020). •• Important information on the multi-directional therapeutic abilities of hUC-MSCs.
    • 147. Zhou T, Yuan Z, Weng J et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 14(1), 24 (2021).
    • 148. Sharma A, Kulkarni R, Sane H et al. Phase 1 clinical trial for intravenous administration of mesenchymal stem cells derived from umbilical cord and placenta in patients with moderate COVID-19 virus pneumonia: results of stage 1 of the study. Am. J. Stem Cells. 11(3), 37–55 (2022).
    • 149. McIntyre LA, Moher D, Fergusson DA et al. Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: a systematic review. PLOS ONE 11(1), e0147170 (2016). •• Important information on the efficacy of MSC treatment in pre-clinical studies.
    • 150. Leng Z, Zhu R, Hou W et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 11(2), 216 (2020).