We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/rme-2023-0187

Aim: Cell therapies for diabetes rely on differentiation of stem cells into insulin-producing cells, which is complex and expensive. Our goal was to evaluate production costs and test ways to reduce it. Methods: Cost of Goods (COGs) analysis for differentiation was completed and the effects of replacement or reduction of the most expensive item was tested using qRT-PCR, immunohistochemistry, flow cytometry along with glucose-stimulated insulin release. Results: Activin A (AA) was responsible for significant cost. Replacement with small molecules failed to form definitive endoderm (DE). Reducing AA by 50% did not negatively affect expression of beta cell markers. Conclusion: Reduction of AA concentration is feasible without adversely affecting DE and islet-like cell differentiation, leading to significant cost savings in manufacturing.

References

  • 1. Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R. Introduction to diabetes mellitus. Adv. Exp. Med. Biol. 771, 1–11 (2012).
  • 2. Zoran DL. Obesity in dogs and cats: a metabolic and endocrine disorder. Vet Clin. North Am. Small Anim. Pract. 40(2), 221–239 (2010).
  • 3. Ruggeri RM, Giuffrida G, Campennì A. Autoimmune endocrine diseases. Minerva Endocrinol 43(3), 305–322 (2018).
  • 4. Kuzuya T, Nakagawa S, Satoh J et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res. Clin. Pract. 55(1), 65–85 (2002).
  • 5. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 19(11), 3342–3363 (2018).
  • 6. Subramanian S, Baidal D. The Management of Type I Diabetes. In: Feingold KRAnawalt BBlackman MR et al. (Eds). Endotext, MDText.com, Inc. Copyright © 2000–2023, MDText.com, Inc, MA, USA (2000).
  • 7. Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med. Sci. Monit. 12(7), Ra130–147 (2006).
  • 8. Vantyghem MC, de Koning EJP, Pattou F, Rickels MR. Advances in β-cell replacement therapy for the treatment of Type I diabetes. Lancet 394(10205), 1274–1285 (2019).
  • 9. Johannesson B, Sui L, Freytes DO, Creusot RJ, Egli D. Toward beta cell replacement for diabetes. EMBO J. 34(7), 841–855 (2015).
  • 10. Melton D. The promise of stem cell-derived islet replacement therapy. Diabetologia 64(5), 1030–1036 (2021).
  • 11. Bourgeois S, Sawatani T, Van Mulders A et al. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 10(1), 191–215 (2021).
  • 12. Park CG, Bottino R, Hawthorne WJ. Current status of islet xenotransplantation. Int. J. Surg. 23(Pt B), 261–266 (2015).
  • 13. Memon B, Younis I, Abubaker F, Abdelalim EM. PDX1(-) /NKX6.1(+) progenitors derived from human pluripotent stem cells as a novel source of insulin-secreting cells. Diabetes Metab Res Rev 37(5), e3400 (2021).
  • 14. Pagliuca FW, Millman JR, Gürtler M et al. Generation of functional human pancreatic β cells in vitro. Cell 159(2), 428–439 (2014).
  • 15. Lees JG, Tuch BE. Conversion of embryonic stem cells into pancreatic beta-cell surrogates guided by ontogeny. Regen. Med. 1(3), 327–336 (2006).
  • 16. Walmsley GG, Hyun J, McArdle A et al. Induced pluripotent stem cells in regenerative medicine and disease modeling. Curr. Stem Cell Res. Ther. 9(2), 73–81 (2014).
  • 17. Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived β-cells from patients with Type I diabetes. Nat. Commun. 7, 11463 (2016).
  • 18. Kumar SS, Alarfaj AA, Munusamy MA et al. Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int. J. Mol. Sci. 15(12), 23418–23447 (2014).
  • 19. Wang X, Gao M, Wang Y, Zhang Y. The progress of pluripotent stem cell-derived pancreatic β-cells regeneration for diabetic therapy. Front. Endocrinol. (Lausanne) 13, 927324 (2022).
  • 20. de Klerk E, Hebrok M. Stem Cell-Based Clinical Trials for Diabetes Mellitus. Front. Endocrinol. (Lausanne) 12, 631463 (2021).
  • 21. Shapiro AMJ, Thompson D, Donner TW et al. Insulin expression and C-peptide in Type I diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med. 2(12), 100466 (2021).
  • 22. Ginty PJ, Singh PB, Smith D, Hourd P, Williams DJ. Achieving reimbursement for regenerative medicine products in the USA. Regen. Med. 5(3), 463–469 (2010).
  • 23. Dodson BP, Levine AD. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol. 15, 70 (2015).
  • 24. Lipsitz YY, Milligan WD, Fitzpatrick I et al. A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 19(12), 1383–1391 (2017).
  • 25. Hawue W, Chencheri S, Virnig BA et al. Price comparison of human and veterinary formulations of common medications. JAMA Intern. Med. 182(11), 1216–1218 (2023).
  • 26. Kim JH, Kawase E, Bharti K, Karnieli O, Arakawa Y, Stacey G. Perspectives on the cost of goods for hPSC banks for manufacture of cell therapies. NPJ Regen. Med. 7(1), 54 (2022).
  • 27. Longo N. WTAS: Inflation Reduction Act Already Impacting R&D Decisions, 2023. https://phrma.org/blog/wtas-inflation-reduction-act-already-impacting-rd-decisions (Accessed 8May 2023).
  • 28. Inflation Reduction Act's Unintended Consequences, 2022. https://phrma.org/Inflation-Reduction-Act (Accessed 8 May 2023).
  • 29. Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38(4), 460–470 (2020).
  • 30. Rezania A, Bruin JE, Arora P et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32(11), 1121–1133 (2014).
  • 31. Semb H. Definitive endoderm: a key step in coaxing human embryonic stem cells into transplantable beta-cells. Biochem. Soc. Trans. 36(Pt 3), 272–275 (2008).
  • 32. Hoveizi E, Nabiuni M, Parivar K, Ai J, Massumi M. Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold. J. Biomed. Mater. Res. A 102(11), 4027–4036 (2014).
  • 33. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23(12), 1534–1541 (2005).
  • 34. Ghorbani-Dalini S, Azarpira N, Sangtarash MH et al. Optimization of activin-A: a breakthrough in differentiation of human induced pluripotent stem cell into definitive endoderm. 3 Biotech. 10(5), 215 (2020).
  • 35. Lee KL, Lim SK, Orlov YL et al. Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLOS Genet. 7(6), e1002130 (2011).
  • 36. Beattie GM, Lopez AD, Bucay N et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23(4), 489–495 (2005).
  • 37. Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M, Yoshida T. Activin A maintains pluripotency markers and proliferative potential of human induced pluripotent stem cells. Exp. Ther. Med. 2(3), 405–408 (2011).
  • 38. Jiang Y, Chen C, Randolph LN et al. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Rep. 16(9), 2395–2409 (2021).
  • 39. Kubo A, Shinozaki K, Shannon JM et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131(7), 1651–1662 (2004).
  • 40. Sulzbacher S, Schroeder IS, Truong TT, Wobus AM. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Rev. Rep. 5(2), 159–173 (2009).
  • 41. Rome B, Nagar S, Egilman A, Wang J, Feldman W, Kesselheim A. Simulated Medicare drug price negotiation under the Inflation Reduction Act of 2022. JAMA Health Forum 4(1), e225218 (2023).
  • 42. Borowiak M, Maehr R, Chen S et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 4(4), 348–358 (2009).
  • 43. Zaret KS. Using small molecules to great effect in stem cell differentiation. Cell Stem Cell. 4(5), 373–374 (2009).
  • 44. Osafune K, Caron L, Borowiak M et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26(3), 313–315 (2008).
  • 45. Ohno Y, Yuasa S, Egashira T et al. Distinct iPS cells show different cardiac differentiation efficiency. Stem Cells Int. 2013, 659739 (2013).
  • 46. Harrison RP, Medcalf N, Rafiq QA. Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories. Regen. Med. 13(2), 159–173 (2018).
  • 47. Inoue R, Nishiyama K, Li J et al. The feasibility and applicability of stem cell therapy for the cure of Type I diabetes. Cells 10(7), 1589–1605 (2021).