We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases

    Wesley Harrisson Bouche Djatche

    School of International Education, Shanxi Medical University, Taiyuan, 030001, China

    ,
    Huimin Zhu

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    ,
    Wenlei Ma

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    ,
    Yue Li

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    ,
    Ziang Li

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    ,
    Hong Zhao

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    ,
    Zhizhen Liu

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    &
    Hua Qiao

    *Author for correspondence:

    E-mail Address: qiaohua0410@126.com

    School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China

    Published Online:https://doi.org/10.2217/rme-2023-0089

    Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8(4), 315–317 (2006).
    • 2. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 3(4), 393–403 (1970).
    • 3. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 18(9), 1852 (2017). •• This review article is of considerable interest, as it provided valuable information used and cited in our paper.
    • 4. De Ugarte DA, Alfonso Z, Zuk PA et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol. Lett. 89(2–3), 267–270 (2003).
    • 5. Orciani M, Di Primio R. Skin-derived mesenchymal stem cells: isolation, culture, and characterization. Methods Mol. Biol. Clifton NJ. 989, 275–283 (2013).
    • 6. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44(8), 1928–1942 (2001).
    • 7. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl Acad. Sci. U. S. A. 97(25), 13625–13630 (2000).
    • 8. Delorme B, Nivet E, Gaillard J et al. The Human Nose Harbors a Niche of Olfactory Ectomesenchymal Stem Cells Displaying Neurogenic and Osteogenic Properties. Stem Cells Dev. 19(6), 853–866 (2010).
    • 9. Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells: multipotent breast milk stem cells. Hum. Cell 23(2), 35–40 (2010).
    • 10. Zheng B, Cao B, Crisan M et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat. Biotechnol. 25(9), 1025–1034 (2007).
    • 11. De Bari C, Dell'Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44(1), 85–95 (2001).
    • 12. Joe AW, Yeung SN. Concise review: identifying limbal stem cells: classical concepts and new challenges. Stem Cells Transl. Med. 3(3), 318–322 (2014).
    • 13. Villaron EM, Almeida J, López-Holgado N et al. Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89(12), 1421–1427 (2004).
    • 14. Ulrich D, Muralitharan R, Gargett CE. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin. Biol. Ther. 13(10), 1387–1400 (2013).
    • 15. Wang H, Hung S, Peng S et al. Mesenchymal Stem Cells in the Wharton's Jelly of the Human Umbilical Cord. Stem Cells 22(7), 1330–1337 (2004).
    • 16. Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells Dayt. Ohio. 22(4), 625–634 (2004).
    • 17. Sohni A, Verfaillie CM. Mesenchymal Stem Cells Migration Homing and Tracking. Stem Cells Int. 2013, 1–8 (2013).
    • 18. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 8(8), 784 (2019).
    • 19. Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 7(1), 125 (2016).
    • 20. Gnecchi M, He H, Noiseux N et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20(6), 661–669 (2006).
    • 21. Gnecchi M, He H, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11(4), 367–368 (2005).
    • 22. Teixeira-Pinheiro LC, Toledo MF, Nascimento-dos-Santos G, Mendez-Otero R, Mesentier-Louro LA, Santiago MF. Paracrine signaling of human mesenchymal stem cell modulates retinal microglia population number and phenotype in vitro. Exp. Eye Res. 200, 108212 (2020).
    • 23. Pawitan JA. Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. BioMed Res. Int. 2014, 1–14 (2014). •• The article was among the early impactful reviews to discuss the prospect of mesenchymal stem cell-conditioned medium (MSC-CM) in regenerative medicine.
    • 24. Kourembanas S. Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy. Annu. Rev. Physiol. 77(1), 13–27 (2015).
    • 25. Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res. Ther. 11(1), 377 (2020).
    • 26. Cho YJ, Song HS, Bhang S et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J. Neurosci. Res. 90(9), 1794–1802 (2012).
    • 27. Chuang T-J, Lin K-C, Chio C-C, Wang C-C, Chang C-P, Kuo J-R. Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J. Trauma Acute Care Surg. 73(5), 1161–1167 (2012).
    • 28. Cantinieaux D, Quertainmont R, Blacher S et al. Conditioned Medium from Bone Marrow-Derived Mesenchymal Stem Cells Improves Recovery after Spinal Cord Injury in Rats: An Original Strategy to Avoid Cell Transplantation. PLOS ONE 8(8), e69515 (2013).
    • 29. Fernández-Francos S, Eiro N, González-Galiano N, Vizoso FJ. Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 22(15), 7850 (2021).
    • 30. Sun DZ, Abelson B, Babbar P, Damaser MS. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat. Rev. Urol. 16(6), 363–375 (2019).
    • 31. Alonso-Alonso ML, Srivastava GK, Usategui-Martín R, García-Gutierrez MT, Pastor JC, Fernandez-Bueno I. Mesenchymal Stem Cell Secretome Enhancement by Nicotinamide and Vasoactive Intestinal Peptide: A New Therapeutic Approach for Retinal Degenerative Diseases. Stem Cells Int. 2020, 1–14 (2020).
    • 32. Kay AG, Long G, Tyler G et al. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis. Sci. Rep. 7(1), 18019 (2017).
    • 33. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng. Part B Rev. 18(2), 101–115 (2012).
    • 34. Salih M, Shaharuddin B, Abdelrazeg S. A Concise Review on Mesenchymal Stem Cells for Tissue Engineering with a Perspective on Ocular Surface Regeneration. Curr. Stem Cell Res. Ther. 15(3), 211–218 (2020).
    • 35. Volarevic V, Markovic BS, Gazdic M et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 15(1), 36–45 (2018).
    • 36. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32(3), 252–260 (2014).
    • 37. Wen Y-T, Ho Y-C, Lee Y-C, Ding D-C, Liu P-K, Tsai R-K. The Benefits and Hazards of Intravitreal Mesenchymal Stem Cell (MSC) Based-Therapies in the Experimental Ischemic Optic Neuropathy. Int. J. Mol. Sci. 22(4), 2117 (2021).
    • 38. Huang H, Kolibabka M, Eshwaran R et al. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 33(12), 14668–14679 (2019).
    • 39. Rasiah PK, Jha KA, Gentry J et al. A Long-Term Safety and Efficacy Report on Intravitreal Delivery of Adipose Stem Cells and Secretome on Visual Deficits After Traumatic Brain Injury. Transl. Vis. Sci. Technol. 11(10), 1 (2022). • Compares the safety of MSC vs its secretome product. It provides evidence for the safety of MSC-based products.
    • 40. Saban DR, Masli S. Pathobiology of Immune-Mediated Diseases of the Ocular Surface. In: Pathobiology of Human Disease. Elsevier, 2055–2071 (2014). [cited 2023 Jul 29]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012386456704702X
    • 41. Su W, Wan Q, Huang J et al. Culture medium from TNF-α–stimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms. J. Allergy Clin. Immunol. 136(2), 423–432.e8 (2015).
    • 42. Fernandes-Cunha GM, Na K-S, Putra I et al. Corneal Wound Healing Effects of Mesenchymal Stem Cell Secretome Delivered Within a Viscoelastic Gel Carrier. Stem Cells Transl. Med. 8(5), 478–489 (2019).
    • 43. Jiang Z, Liu G, Meng F et al. Paracrine effects of mesenchymal stem cells on the activation of keratocytes. Br. J. Ophthalmol. 101(11), 1583–1590 (2017).
    • 44. Ma S, Yin J, Hao L et al. Exosomes From Human Umbilical Cord Mesenchymal Stem Cells Treat Corneal Injury via Autophagy Activation. Front. Bioeng. Biotechnol. 10, 879192 (2022).
    • 45. Mittal R, Patel S, Galor A. Alternative therapies for dry eye disease. Curr. Opin. Ophthalmol. 32(4), 348–361 (2021).
    • 46. Beyazyıldız E, Pınarlı FA, Beyazyıldız Ö et al. Efficacy of Topical Mesenchymal Stem Cell Therapy in the Treatment of Experimental Dry Eye Syndrome Model. Stem Cells Int. 2014, 1–9 (2014).
    • 47. Lee Y-C, Sun L-Y, Zhang J-R. Protective effects of low-molecular-weight components of adipose stem cell-derived conditioned medium on dry eye syndrome in mice. Sci. Rep. 11(1), 21874 (2021).
    • 48. Dietrich J, Roth M, König S, Geerling G, Mertsch S, Schrader S. Analysis of lacrimal gland derived mesenchymal stem cell secretome and its impact on epithelial cell survival. Stem Cell Res. 38, 101477 (2019).
    • 49. Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cells and Their Secretome in the Treatment of Glaucoma. Stem Cells Int. 2019, 1–11 (2019). • Provides evidence for the therapeutic potential of MSC secretome for the treatment of glaucoma.
    • 50. Roubeix C, Denoyer A, Brignole-Baudouin F, Baudouin C. Thérapie cellulaire par cellules souches mésenchymateuses, un nouvel espoir pour les pathologies oculaires. J. Fr. Ophtalmol. 38(8), 764–775 (2015).
    • 51. Johnson TV, DeKorver NW, Levasseur VA et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 137(2), 503–519 (2014).
    • 52. Yu F, Wang Y, Huang C-Q, Lin S-J, Gao R-X, Wu R-Y. Neuroprotective effect of mesenchymal stem cell-derived extracellular vesicles on optic nerve injury in chronic ocular hypertension. Neural Regen. Res. 18(10), 2301–2306 (2023).
    • 53. Roth S, Dreixler JC, Mathew B et al. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats. Invest. Ophthalmol. Vis. Sci. 57(7), 3522–3532 (2016).
    • 54. Mathew B, Ravindran S, Liu X et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 197, 146–160 (2019).
    • 55. Usategui-Martín R, Puertas-Neyra K, García-Gutiérrez M-T, Fuentes M, Pastor JC, Fernandez-Bueno I. Human Mesenchymal Stem Cell Secretome Exhibits a Neuroprotective Effect over In Vitro Retinal Photoreceptor Degeneration. Mol. Ther. - Methods Clin. Dev. 17, 1155–1166 (2020).
    • 56. Jha KA, Gentry J, Del Mar NA, Reiner A, Sohl N, Gangaraju R. Adipose Tissue-Derived Mesenchymal Stem Cell Concentrated Conditioned Medium Alters the Expression Pattern of Glutamate Regulatory Proteins and Aquaporin-4 in the Retina after Mild Traumatic Brain Injury. J. Neurotrauma 38(12), 1702–1716 (2021).
    • 57. Mead B, Chamling X, Zack DJ, Ahmed Z, Tomarev S. TNFα-Mediated Priming of Mesenchymal Stem Cells Enhances Their Neuroprotective Effect on Retinal Ganglion Cells. Investig. Opthalmology Vis. Sci. 61(2), 6 (2020).
    • 58. Jha KA, Rasiah PK, Gentry J et al. Mesenchymal stem cell secretome protects against oxidative stress-induced ocular blast visual pathologies. Exp. Eye Res. 215, 108930 (2022).
    • 59. Kuo S, Chio C, Yeh C et al. Mesenchymal stem cell-conditioned medium attenuates the retinal pathology in amyloid-β-induced rat model of Alzheimer's disease: underlying mechanisms. Aging Cell. 20(5), (2021).
    • 60. Elshaer SL, Evans W, Pentecost M et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res. Ther. 9(1), 322 (2018).
    • 61. Ma M, Li B, Zhang M et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Exp. Eye Res. 191, 107899 (2020).
    • 62. Bai L, Shao H, Wang H et al. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci. Rep. 7(1), 4323 (2017).
    • 63. Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front. Immunol. 12, 749192 (2021).
    • 64. Shigemoto-Kuroda T, Oh JY, Kim D et al. MSC-derived Extracellular Vesicles Attenuate Immune Responses in Two Autoimmune Murine Models: Type 1 Diabetes and Uveoretinitis. Stem Cell Rep. 8(5), 1214–1225 (2017).
    • 65. Bermudez MA, Sendon-Lago J, Seoane S et al. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp. Eye Res. 149, 84–92 (2016).
    • 66. Gu Y, Yao K, Fu Q. Lens regeneration: scientific discoveries and clinical possibilities. Mol. Biol. Rep. 48(5), 4911–4923 (2021).
    • 67. Konala VBR, Bhonde R, Pal R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency. Vitro Cell. Dev. Biol. - Anim. 56(9), 689–700 (2020).
    • 68. Nakanishi C, Nagaya N, Ohnishi S et al. Gene and Protein Expression Analysis of Mesenchymal Stem Cells Derived From Rat Adipose Tissue and Bone Marrow. Circ. J. 75(9), 2260–2268 (2011).
    • 69. Efimenko A, Dzhoyashvili N, Kalinina N et al. Adipose-Derived Mesenchymal Stromal Cells From Aged Patients With Coronary Artery Disease Keep Mesenchymal Stromal Cell Properties but Exhibit Characteristics of Aging and Have Impaired Angiogenic Potential. Stem Cells Transl. Med. 3(1), 32–41 (2014).
    • 70. Sagaradze G, Grigorieva O, Nimiritsky P et al. Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. Int. J. Mol. Sci. 20(7), 1656 (2019).
    • 71. Baer P, Overath J, Urbschat A et al. Effect of Different Preconditioning Regimens on the Expression Profile of Murine Adipose-Derived Stromal/Stem Cells. Int. J. Mol. Sci. 19(6), 1719 (2018).
    • 72. Wernly B, Gonçalves I, Kiss A et al. Differences in Stem Cell Processing Lead to Distinct Secretomes Secretion-Implications for Differential Results of Previous Clinical Trials of Stem Cell Therapy for Myocardial Infarction. Biotechnol. J. 12(9), 1600732 (2017).
    • 73. Pires AO, Mendes-Pinheiro B, Teixeira FG et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev. 25(14), 1073–1083 (2016).
    • 74. Donders R, Bogie JFJ, Ravanidis S et al. Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells Dev. 27(2), 65–84 (2018).
    • 75. Turinetto V, Vitale E, Giachino C. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int. J. Mol. Sci. 17(7), 1164 (2016).
    • 76. Zhang Y, Ravikumar M, Ling L, Nurcombe V, Cool SM. Age-Related Changes in the Inflammatory Status of Human Mesenchymal Stem Cells: Implications for Cell Therapy. Stem Cell Rep. 16(4), 694–707 (2021).
    • 77. Lange-Consiglio A, Lazzari B, Pizzi F et al. Different Culture Times Affect MicroRNA Cargo in Equine Amniotic Mesenchymal Cells and Their Microvesicles. Tissue Eng. Part C Methods. 24(10), 596–604 (2018).
    • 78. Teixeira FG, Panchalingam KM, Anjo SI et al. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res. Ther. 6(1), 133 (2015).
    • 79. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front. Immunol. 9, 2837 (2018). • Discusses the effect of different preconditioning factors on the therapeutic potential of MSC secretome.
    • 80. Kang S, Kim S-M, Sung J-H. Cellular and molecular stimulation of adipose-derived stem cells under hypoxia: stimulation of ASCs under hypoxia. Cell Biol. Int. 38(5), 553–562 (2014).
    • 81. Bader AM, Klose K, Bieback K et al. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLOS ONE. 10(9), e0138477 (2015).
    • 82. Beegle J, Lakatos K, Kalomoiris S et al. Hypoxic Preconditioning of Mesenchymal Stromal Cells Induces Metabolic Changes, Enhances Survival, and Promotes Cell Retention In Vivo. Stem Cells 33(6), 1818–1828 (2015).
    • 83. Stubbs SL, Hsiao ST-F, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ. Hypoxic Preconditioning Enhances Survival of Human Adipose-Derived Stem Cells and Conditions Endothelial Cells In Vitro. Stem Cells Dev. 21(11), 1887–1896 (2012).
    • 84. Tsai C-C, Chen Y-J, Yew T-L et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A–p21 by HIF-TWIST. Blood 117(2), 459–469 (2011).
    • 85. English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol. Cell Biol. 91(1), 19–26 (2013).
    • 86. Kim DS, Jang IK, Lee MW et al. Enhanced Immunosuppressive Properties of Human Mesenchymal Stem Cells Primed by Interferon-γ. EBioMedicine. 28, 261–273 (2018).
    • 87. Maffioli E, Nonnis S, Angioni R et al. Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J. Proteomics. 166, 115–126 (2017).
    • 88. Lee MJ, Kim J, Kim MY et al. Proteomic Analysis of Tumor Necrosis Factor-α-Induced Secretome of Human Adipose Tissue-Derived Mesenchymal Stem Cells. J. Proteome Res. 9(4), 1754–1762 (2010).
    • 89. Onzi GR, Ledur PF, Hainzenreder LD et al. Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy. 18(7), 828–837 (2016).
    • 90. Dehghani L, Khojasteh A, Soleimani M et al. Safety of intraparenchymal injection of allogenic placenta mesenchymal stem cells derived exosome in patients undergoing decompressive craniectomy following malignant middle cerebral artery infarct, a pilot randomized clinical trial. Int. J. Prev. Med. 13(1), 7 (2022).
    • 91. Maguire G, Friedman P. The safety of a therapeutic product composed of a combination of stem cell released molecules from adipose mesenchymal stem cells and fibroblasts. Future Sci. OA. 6(7), FSO592 (2020). • Evaluates the safety of MSC secretome product. It provides evidence for the safety of MSC-based products.