We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Laser oromaxillofacial photobiomodulation therapy: molecular mechanisms, outcomes and considerations

    Brian Fiani

    *Author for correspondence: Tel.: +1 866 426 7787;

    E-mail Address: bfiani@outlook.com

    Department of Neurosurgery, Cornell Medical Center/New York Presbyterian, New York, NY 10065, USA

    ,
    Ryan Jarrah

    Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA

    &
    Karim Rizwan Nathani

    Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA

    Published Online:https://doi.org/10.2217/rme-2022-0091

    Tweetable abstract

    Photobiomodulation therapy is largely characterized as a safe therapeutic model that can modulate the activity of inflammatory and immune biomarkers while facilitating a metabolic response that can regenerate damaged tissue.

    References

    • 1. Torres AE, Lim HW. Photobiomodulation for the management of hair loss. Photodermatol. Photoimmunol. Photomed. 37(2), 91–98 (2021).
    • 2. Kalhori KAM, Vahdatinia F, Jamalpour MR et al. Photobiomodulation in oral medicine. Photobiomodul. Photomed. Laser Surg. 37(12), 837–861 (2019).
    • 3. Zadik Y, Arany PR, Fregnani ER et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 27(10), 3969–3983 (2019).
    • 4. Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed. Laser Surg. 33(4), 183–184 (2015).
    • 5. Courtois E, Bouleftour W, Guy JB et al. Mechanisms of photobiomodulation (PBM) focused on oral mucositis prevention and treatment: a scoping review. BMC Oral Health 21(1), 220 (2021).
    • 6. Cronshaw M, Parker S, Anagnostaki E, Mylona V, Lynch E, Grootveld M. Photobiomodulation and oral mucositis: a systematic review. Dent. J. (Basel) 8(3), 87 (2020).
    • 7. Bensadoun RJ. Photobiomodulation or low-level laser therapy in the management of cancer therapy-induced mucositis, dermatitis and lymphedema. Curr. Opin. Oncol. 30(4), 226–232 (2018).
    • 8. Adnan A, Yaroslavsky AN, Carroll JD et al. The path to an evidence-based treatment protocol for extraoral photobiomodulation therapy for the prevention of oral mucositis. Front. Oral Health 2, 689386 (2021).
    • 9. Elting LS, Chang YC. Costs of oral complications of cancer therapies: estimates and a blueprint for future study. J. Natl Cancer Inst. Monogr. 2019(53), lgz010 (2019).
    • 10. Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain photobiomodulation therapy: a narrative review. Mol. Neurobiol. 55(8), 6601–6636 (2018).
    • 11. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J. Biophotonics 6(10), 829–838 (2013).
    • 12. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed. Laser Surg. 29(5), 351–358 (2011).
    • 13. Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J. Alzheimers Dis. 32(3), 741–752 (2012).
    • 14. Hill BC. Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. J. Biol. Chem. 269(4), 2419–2425 (1994).
    • 15. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 23(4), 355–361 (2005).
    • 16. Santana-Blank L, Rodriguez-Santana E, Santana-Rodriguez K. Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed. Laser Surg. 28(Suppl. 1), S41–S52 (2010).
    • 17. Hamblin MR, Hamblin MR, Waynant RW, Anders J. The role of nitric oxide in low level light therapy. Mechanisms for Low-Light Therapy III doi: 10.1117/12.764918 (2008) (Epub ahead of print).
    • 18. Karu TI, Karu TI, Lubart R. Mechanisms of low-power laser light action on cellular level. Effects of Low-Power Light on Biological Systems V doi: 10.1117/12.405918 (2000) (Epub ahead of print).
    • 19. De Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 22(3), 7000417 (2016).
    • 20. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J. Biomed. Sci. 16, 4 (2009).
    • 21. Zhang D, Spielmann A, Wang L et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol. Res. 61(1), 113–124 (2012).
    • 22. Feng Q. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr. Top. Membr. 74, 19–50 (2014).
    • 23. Nishida M, Hara Y, Yoshida T, Inoue R, Mori Y. TRP channels: molecular diversity and physiological function. Microcirculation 13(7), 535–550 (2006).
    • 24. Albert ES, Bec JM, Desmadryl G et al. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J. Neurophysiol. 107(12), 3227–3234 (2012).
    • 25. Lopes NN, Plapler H, Lalla RV et al. Effects of low-level laser therapy on collagen expression and neutrophil infiltrate in 5-fluorouracil-induced oral mucositis in hamsters. Lasers Surg. Med. 42(6), 546–552 (2010).
    • 26. Jadaud E, Bensadoun R. Low-level laser therapy: a standard of supportive care for cancer therapy-induced oral mucositis in head and neck cancer patients? Laser Ther. 21(4), 297–303 (2012).
    • 27. Oberoi S, Zamperlini-Netto G, Beyene J, Treister NS, Sung L. Effect of prophylactic low level laser therapy on oral mucositis: a systematic review and meta-analysis. PLoS One 9(9), e107418 (2014).
    • 28. Hanna R, Dalvi S, Benedicenti S et al. Photobiomodulation therapy in oral mucositis and potentially malignant oral lesions: a therapy towards the future. Cancers (Basel) 12(7), 1949 (2020).
    • 29. Oton-Leite AF, Correa De Castro AC, Morais MO, Pinezi JC, Leles CR, Mendonca EF. Effect of intraoral low-level laser therapy on quality of life of patients with head and neck cancer undergoing radiotherapy. Head Neck 34(3), 398–404 (2012).
    • 30. El Mobadder M, Farhat F, El Mobadder W, Nammour S. Photobiomodulation therapy in the treatment of oral mucositis, dysphagia, oral dryness, taste alteration, and burning mouth sensation due to cancer therapy: a case series. Int. J. Environ. Res. Public Health 16(22), 4505 (2019).
    • 31. OraMaxRX. OraMaxRX (2021). www.oramaxrx.com/oramaxrx-laser
    • 32. Martins AFL, Nogueira TE, Morais MO et al. Cost–effectiveness randomized clinical trial on the effect of photobiomodulation therapy for prevention of radiotherapy-induced severe oral mucositis in a Brazilian cancer hospital setting. Support. Care Cancer 29(3), 1245–1256 (2021).
    • 33. Campos TM, Do Prado Tavares Silva CA, Sobral APT et al. Photobiomodulation in oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis followed by a cost-effectiveness analysis. Support. Care Cancer 28(12), 5649–5659 (2020).
    • 34. Hennessy M, Hamblin MR. Photobiomodulation and the brain: a new paradigm. J. Opt. 19(1), 013003 (2017).
    • 35. Pandeshwar P, Roa MD, Das R, Shastry SP, Kaul R, Srinivasreddy MB. Photobiomodulation in oral medicine: a review. J. Investig. Clin. Dent. 7(2), 114–126 (2016).