We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Spinal intervertebral disc regeneration versus repair: cost, outcomes and future considerations

    Ryan Jarrah

    Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Taylor Reardon

    Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA

    ,
    Tyler Warner

    School of Medicine, St. George’s University, West Indies, Grenada

    ,
    Frank De Stefano

    College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA

    &
    Brian Fiani

    *Author for correspondence: Tel.: +1 212 746 5454;

    E-mail Address: bfiani@outlook.com

    Department of Neurosurgery, Weill Cornell Medical Center/New York Presbyterian Hospital, New York, NY 10065, USA

    Published Online:https://doi.org/10.2217/rme-2022-0049
    Free first page

    References

    • 1. Murray CJ, Atkinson C, Bhalla K et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA 310(6), 591–608 (2013).
    • 2. Kos N, Gradisnik L, Velnar T. A brief review of the degenerative intervertebral disc disease. Med. Arch. 73(6), 421–424 (2019).
    • 3. Sloan SR Jr, Wipplinger C, Kirnaz S et al. Combined nucleus pulposus augmentation and annulus fibrosus repair prevents acute intervertebral disc degeneration after discectomy. Sci. Transl. Med. 12(534), (2020).
    • 4. Huang YC, Urban JP, Luk KD. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10(9), 561–566 (2014).
    • 5. Geurts J, Van Vugt T, Thijssen E, Arts JJ. Cost-effectiveness study of one-stage treatment of chronic osteomyelitis with bioactive glass S53P4. Materials 12(19), 1–11 (2019).
    • 6. Fiani B, Jarrah R, Shields J, Sekhon M. Enhanced biomaterials: systematic review of alternatives to supplement spine fusion including silicon nitride, bioactive glass, amino peptide bone graft, and tantalum. Neurosurg. Focus 50(6), E10 (2021).
    • 7. Sarrigiannidis SO, Rey JM, Dobre O et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio. 10, 100098 (2021).
    • 8. Binch ALA, Fitzgerald JC, Growney EA, Barry F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat. Rev. Rheumatol. 17(3), 158–175 (2021).
    • 9. Bach FC, Poramba-Liyanage DW, Riemers FM et al. Notochordal cell-based treatment strategies and their potential in intervertebral disc regeneration. Front. Cell. Dev. Biol. 9, 9 (2022).
    • 10. Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 4(4), e1175 (2021).
    • 11. Wangler S, Peroglio M, Menzel U et al. Mesenchymal stem cell homing into intervertebral discs enhances the tie2-positive progenitor cell population, prevents cell death, and induces a proliferative response. Spine (Phila Pa 1976) 44(23), 1613–1622 (2019).
    • 12. Ura K, Yamada K, Tsujimoto T et al. Ultra-purified alginate gel implantation decreases inflammatory cytokine levels, prevents intervertebral disc degeneration, and reduces acute pain after discectomy. Sci. Rep. 11(1), 638 (2021).
    • 13. Silva-Correia J, Oliveira JM, Caridade SG et al. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J. Tissue Eng. Regen. Med. 5(6), e97–107 (2011).
    • 14. Parkinson B, Goodall S, Thavaneswaran P. Cost-effectiveness of lumbar artificial intervertebral disc replacement: driven by the choice of comparator. ANZ J. Surg. 83(9), 669–675 (2013).
    • 15. Radcliff K, Lerner J, Yang C et al. Seven-year cost-effectiveness of ProDisc-C total disc replacement: results from investigational device exemption and post-approval studies. J. Neurosurg. Spine 24(5), 760–768 (2016).
    • 16. Chen Y, Li Y, Hai Y et al. Comparison of radiographic reconstruction and clinical improvement between artificial cervical disc replacement and anterior cervical discectomy and fusion. Pain Res. Manage. 2022, 3353810 (2022).
    • 17. Wang H, Wang X, Liu H et al. Risk factors for high-grade heterotopic ossification after total disc replacement: a single-center experience of 394 cases. Neurosurgery 89(5), 852–861 (2021).
    • 18. Abudouaini H, Huang C, Liu H et al. Assessment of the self-reported dysphagia in patients undergoing one-level versus two-level cervical disc replacement with the Prestige-LP prosthesis. Clin. Neurol. Neurosurg. 207, 106759 (2021).
    • 19. Guo H, Sheng J, Sheng WB et al. An eight-year follow-up study on the treatment of single-level cervical spondylosis through intervertebral disc replacement and anterior cervical decompression and fusion. Orthop. Surg. 12(3), 717–726 (2020).
    • 20. Li YZ, Sun P, Chen D et al. Artificial total disc replacement versus fusion for lumbar degenerative disc disease: an update systematic review and meta-analysis. Turk. Neurosurg. 30(1), 1–10 (2020).
    • 21. Balboni JM, Siddique K, Nomoto EK et al. Novel use of robotics and navigation for anterior lumbar total disc replacement surgery. N. Am. Spine Soc. J. 9, 100097 (2022).
    • 22. Sakai D. Future perspectives of cell-based therapy for intervertebral disc disease. Eur. Spine J. 17(Suppl. 4), 452–458 (2008).