We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?

    Maooz Awan

    Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK

    ,
    Iryna Buriak

    Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv

    ,
    Roland Fleck

    Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK

    ,
    Barry Fuller

    Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK

    ,
    Anatoliy Goltsev

    Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv

    ,
    Julie Kerby

    Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK

    ,
    Mark Lowdell

    Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK

    ,
    Pavel Mericka

    Tissue Bank, University Hospital Hradec Kralové, Czech Republic

    ,
    Alexander Petrenko

    Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv

    ,
    Yuri Petrenko

    Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic

    ,
    Olena Rogulska

    Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv

    ,
    Alexandra Stolzing

    University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK

    &
    Glyn N Stacey

    *Author for correspondence:

    E-mail Address: glyn.stacey@iscbi.org

    International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ

    Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China

    Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China

    Published Online:https://doi.org/10.2217/rme-2019-0145

    Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Lovelock JE , Bishop MWH . Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183(4672), 1394–1395 (1959). • Rationale for the original selection of dimethyl sulfoxide (DMSO) as a cryoprotective agent (CPA).
    • 2. MacGregor WS . The chemical and physical properties of DMSO. Ann. NY Acad. Sci. 141(1 Biological Ac), 3–12 (1967).
    • 3. Rammler DH , Zaffaroni A . Biological implications of DMSO based on a review of its chemical properties. Ann. NY Acad. Sci. 141(1 Biological Ac), 13–23 (1967).
    • 4. Szmant HH . Physical properties of dimethyl sulfoxide and its function in biological systems. Ann. NY Acad. Sci. 243(1), 20–23 (1975).
    • 5. Brayton CF . Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 76(1), 61–90 (1986). • Describes the fundamental mode of action of DMSO.
    • 6. Ashwood-Smith MJ , Bridges BA . On the sensitivity of frozen micro-organisms to ultraviolet radiation. Proc. R. Soc. London. Ser. B. Biol. Sci. 168(1011), 194–202 (1967).
    • 7. David NA . The pharmacology of dimethyl sulfoxide. Annu. Rev. Pharmacol. 12(1), 353–374 (1972).
    • 8. Pope DC , Oliver WT . Dimethyl sulfoxide (DMSO). Can. J. Comp. Med. Vet. Sci. 30(1), 3 (1966).
    • 9. Shu Z , Heimfeld S , Gao D . Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 49(4), 469–476 (2014).
    • 10. Momose Y , Matsumoto R , Maruyama A , Yamaoka M . Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze–thaw stress in Saccharomyces cerevisiae . Cryobiology 60(3), 245–261 (2010).
    • 11. Lampugnani MG , Pedenovi M , Niewiarowski A et al. Effects of dimethyl sulfoxide (DMSO) on microfilament organization, cellular adhesion, and growth of cultured mouse B16 melanoma cells. Exp. Cell Res. 172(2), 385–396 (1987).
    • 12. Davidson AF , Glasscock C , McClanahan DR , Benson JD , Higgins AZ . Toxicity minimized cryoprotectant addition and removal procedures for adherent endothelial cells. PLoS ONE 10(11), e0142828 (2015).
    • 13. Trubiani O , Salvolini E , Staffolani R , Di Primio R , Mazzanti L . DMSO modifies structural and functional properties of RPMI-8402 cells by promoting programmed cell death. Int. J. Immunopathol. Pharmacol. 16(3), 253–259 (2003).
    • 14. Trubiani O , Ciancarelli M , Di Primio R . Cell differentiation is associated to DMSO-induced programmed cell death. Biochem. Soc. Trans. 24(4), S555 (1996).
    • 15. Trubiani O , Ciancarelli M , Rapino M , Di Primio R . Dimethyl sulfoxide induces programmed cell death and reversible G1 arrest in the cell cycle of human lymphoid pre-T cell line [Internet]. 50(1–2), 51–57 (1996).
    • 16. Trubiani O , Pieri C , Rapino M , Di Primio R . The c-myc gene regulates the polyamine pathway in DMSO-induced apoptosis. Cell Prolif. 32(2–3), 119–129 (1999).
    • 17. Galvao J , Davis B , Tilley M , Normando E , Duchen MR , Cordeiro MF . Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28(3), 1317–1330 (2014).
    • 18. Hanslick JL , Lau K , Noguchi KK et al. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol. Dis. 34(1), 1–10 (2009).
    • 19. Yuan C , Gao J , Guo J et al. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS ONE 9(9), e107447 (2014).
    • 20. Banič B , Nipič D , Suput D , I M . DMSO modulates the pathway of apoptosis triggering. Cell. Mol. Biol. Lett. 16(2), 328–341 (2011).
    • 21. Timm M , Saaby L , Moesby L , Hansen EW . Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology. 65(5), 887–894 (2013).
    • 22. Yi X , Liu M , Luo Q et al. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro . FEBS Open Bio., 7(4), 485–494 (2017).
    • 23. Hajighasemi F , Tajik S . Assessment of cytotoxicity of dimethyl sulfoxide in human hematopoietic tumor cell lines. Iran. J. Blood Cancer. 9(2), 48–52 (2017).
    • 24. Sun H , Wang Y . Apoptosis of human leukemic HL-60 cells induced to differentiate by treatment with RA or DMSO. Cell Res., (2), 181–186 (1995).
    • 25. Trivedi AB , Kitabatake N , Doi E . Toxicity of dimethyl sulfoxide as a solvent in bioassay system with HeLa cells evaluated colorimetrically with 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide. Agric. Biol. Chem. 54(11), 2961–2966 (1990).
    • 26. Da Violante G , Zerrouk N , Richard I , Provot G , Chaumeil JC , Arnaud P . Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol. Pharm. Bull. 25(12), 1600–1603 (2002).
    • 27. Kita H , Okamoto K , Kushima R , Kawauchi A , Chano T . Dimethyl sulfoxide induces chemotherapeutic resistance in the treatment of testicular embryonal carcinomas. Oncol. Lett. 10(2), 661–666 (2015).
    • 28. Farrant J . Pharmacological actions and toxicity of dimethyl sulphoxide and other compounds which protect smooth muscle during freezing and thawing. J. Pharm. Pharmacol. 16(7), 472–483 (1964). • Early description of cytotoxic effects of DMSO.
    • 29. Ashwood-Smith MJ . Low temperature preservation of mouse lymphocytes with dimethyl sulfoxide. Blood 23(4), 494–501 (1964). • Early description of use of DMSO for successful reservation of mammalian cells.
    • 30. Lionetti FJ , Hunt SM , Gore JM , Curby WA . Cryopreservation of human granulocytes. Cryobiology 12(3), 181–191 (1975).
    • 31. Miller RA , Bean MA , Kodera Y , Herr HW . Cryopreservation of human effector cells active in antibody-dependent cell-mediated cytotoxicity. Transplantation 21(6), 517–519 (1976).
    • 32. Ragab AH , Gilkerson E , Myers M . Factors in the cryopreservation of bone marrow cells from children with acute lymphocytic leukemia. Cryobiology 14(2), 125–134 (1977).
    • 33. Wells SA , Christiansen C . The transplanted parathyroid gland: evaluation of cryopreservation and other environmental factors which affect its function. Surgery 75(1), 49–55 (1974).
    • 34. Dent TL , Weber TR , Lindenauer SM et al. Cryopreservation of vein grafts. Surg. Forum. 25(0), 241–243 (1974).
    • 35. Graham-Pole J , Davie M , Willoughby ML . Cryopreservation of human granulocytes in liquid nitrogen. J. Clin. Pathol. 30(8), 758–762 (1977).
    • 36. Windrum P , Morris TCM , Drake MB , Niederwieser D , Ruutu T . Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant. 36(7), 601–603 (2005).
    • 37. Ruiz-Delgado GJ , Mancías-Guerra C , Tamez-Gómez EL et al. Dimethyl sulfoxide-induced toxicity in cord blood stem cell transplantation: report of three cases and review of the literature. Acta Haematol. 122(1), 1–5 (2009). • An example of reports of DMSO toxicity in patients.
    • 38. Nusbaumer D , Cunha LM da , Wedekind C . Comparing methanol-glucose and dimethyl-sulfoxide based extender for milt cryopreservation of brown trout (Salmo trutta). BioRxiv. doi: https://doi.org/10.1101/289736 289736 (2018).
    • 39. Aramli MS , Golshahi K , Nazari RM , Aramli S , Banan A . Effectiveness of glucose–methanol extender for cryopreservation of Huso huso spermatozoa. Anim. Reprod. Sci. 162, 37–42 (2015).
    • 40. Zhang M , Oldenhof H , Sydykov B , Bigalk J , Sieme H , Wolkers WF . Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci. Rep. 7(1), 6198 (2017).
    • 41. Rowley SD , Anderson GL . Effect of DMSO exposure without cryopreservation on hematopoietic progenitor cells. Bone Marrow Transplant. 11(5), 389–393 (1993).
    • 42. Branch DR , Calderwood S , Cecutti MA , Herst R , Solh H . Hematopoietic progenitor cells are resistant to dimethyl sulfoxide toxicity. Transfusion 34(10), 887–890 (1994).
    • 43. Mitrus I , Smagur A , Fidyk W et al. Reduction of DMSO concentration in cryopreservation mixture from 10% to 7.5% and 5% has no impact on engraftment after autologous peripheral blood stem cell transplantation: results of a prospective, randomized study. Bone Marrow Transpl. 53(3), 274–280 (2018).
    • 44. Bakken AM , Bruserud O , Abrahamsen JF . No differences in colony formation of peripheral blood stem cells frozen with 5% or 10% dimethyl sulfoxide. J. Hematother. Stem Cell Res. 12(3), 351–358 (2003).
    • 45. Abrahamsen JF , Bakken AM , Bruserud O . Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 42(12), 1573–1580 (2002).
    • 46. Abrahamsen JF , Rusten L , Bakken AM , Bruserud O . Better preservation of early hematopoietic progenitor cells when human peripheral blood progenitor cells are cryopreserved with 5 percent dimethylsulfoxide instead of 10 percent dimethylsulfoxide. Transfusion 44(5), 785–789 (2004).
    • 47. Tunçer S , Gurbanov R , Sheraj I , Solel E , Esenturk O , Banerjee S . Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci. Rep. 8(1), 14828 (2018).
    • 48. Pal R , Mamidi MK , Das AK , Bhonde R . Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch. Toxicol. 86(4), 651–661 (2012).
    • 49. Vincent C , Pickering SJ , Johnson MH , Quick SJ . Dimethylsulphoxide affects the organisation of microfilaments in the mouse oocyte. Mol. Reprod. Dev. 26(3), 227–235 (1990).
    • 50. Johnson MH , Pickering SJ . The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte. Development 100(2), 313–324 (1987).
    • 51. Chetty S , Pagliuca FW , Honore C , Kweudjeu A , Rezania A , Melton DA . A simple tool to improve pluripotent stem cell differentiation. Nat. Methods. 10(6), 553 (2013).
    • 52. Robey P . “Mesenchymal stem cells”: fact or fiction, and implications in their therapeutic use. F1000Research doi:10.12688/f1000research.10955.1 (2017).
    • 53. Santos NC , Figueira-Coelho J , Martins-Silva J , Saldanha C . Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 65(7), 1035–1041 (2003).
    • 54. Czysz K , Minger S , Thomas N . DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation. PLoS ONE 10(2), e0117689 (2015).
    • 55. Borisov PA , Dimitrov AY , Ostankov MV , Goltsev AN . Effect of different DMSO concentrations on expression level of stemness genes in mice fetal liver stem cells prior to and after cryopreservation. Probl. Cryobiol. Cryomed. 24(2), 185–185 (2014).
    • 56. Goltsev A , Gordiyenko Y , Rossokha I et al. Model of track formation by a bone marrow adhesive cell moving on a substrate surface [Internet]. In: AIP Conference Proceedings, American Institute of Physics, 2123–2126 (2010).
    • 57. Karow AM , Abouna GJM , Humphries AL . Cryopreservation: pharmacological considerations [Internet]. In: Organ Preservation for Transplantation, Little, Brown, 86–107 (1974).
    • 58. Eroglu A . Cryopreservation of mammalian oocytes by using sugars: intra- and extracellular raffinose with small amounts of dimethylsulfoxide yields high cryosurvival, fertilization, and development rates. Cryobiology 60(3), S54–S59 (2010).
    • 59. Miao S , Mills S , Stanton C , Fitzgerald GF , Roos Y , Ross RP . Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci. Technol. 88(1), 19–30 (2008).
    • 60. Solocinski J , Osgood Q , Wang M , Connolly A , Menze MA , Chakraborty N . Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism. Cryobiology 75, 134–143 (2017).
    • 61. Chiu P-L , Kelly DF , Walz T . The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron 42(8), 762–772 (2011).
    • 62. Crowe LM , Reid DS , Crowe JH . Is trehalose special for preserving dry biomaterials? Biophys. J. 71(4), 2087–2093 (1996).
    • 63. Jain NK , Roy I . Trehalose and Protein Stability [Internet]. In: Current Protocols in Protein Science, John Wiley & Sons, Inc, NJ, USA, 4.9.1–4.9.12 (2010).
    • 64. Kilburn D , Townrow S , Meunier V , Richardson R , Alam A , Ubbink J . Organization and mobility of water in amorphous and crystalline trehalose. Nat. Mater. 5(8), 632–635 (2006).
    • 65. Pu LLQ , Cui X , Fink BF , Gao D , Vasconez HC . Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plast. Reconstr. Surg. 117(6), 1845–1850 (2006).
    • 66. De Rosa A , De Francesco F , Tirino V et al. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology. Tissue Eng. Part C Methods. 15(4), 659–667 (2009).
    • 67. Rodrigues JP , Paraguassú-Braga FH , Carvalho L , Abdelhay E , Bouzas LF , Porto LC . Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56(2), 144–151 (2008).
    • 68. Motta JPR , Paraguassú-Braga FH , Bouzas LF , Porto LC . Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology 68(3), 343–348 (2014).
    • 69. Petrenko YA , Jones DRE , Petrenko AY . Cryopreservation of human fetal liver hematopoietic stem/progenitor cells using sucrose as an additive to the cryoprotective medium. Cryobiology 57(3), 195–200 (2008).
    • 70. Mantri S , Kanungo S , Mohapatra PC . Cryoprotective effect of disaccharides on cord blood stem cells with minimal use of DMSO. Indian J. Hematol. Blood Transfus. 31(2), 206–212 (2015).
    • 71. Yang B , Liu B , Zhou X , Shen L , Huang D . Enhanced metabolic function of human hepatocytes cryopreserved with low concentration Me2SO and polyol additives at -80°C [Internet]. Cryoletters 34(4), 381–387 (2015).
    • 72. Cardoso LM da F , Pinto MA , Henriques Pons A , Alves LA . Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology 78, 15–21 (2017).
    • 73. Seo JM , Sohn MY , Suh JS , Atala A , Yoo JJ , Shon Y-H . Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology 62(3), 167–173 (2011).
    • 74. Zhou X , Yuan J , Liu J , Liu B . Loading trehalose into red blood cells by electroporation and its application in freeze-drying. Cryo Letters 31(2), 147–156 (2010).
    • 75. Weaver JC . Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51(4), 426–435 (1993).
    • 76. Dovgan B , Barlič A , Knežević M , Miklavčič D . Cryopreservation of human adipose-derived stem cells in combination with trehalose and reversible electroporation. J. Membr. Biol. 250(1), 1–9 (2017).
    • 77. Acker JP , Lu X , Young V et al. Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnol. Bioeng. 82(5), 525–532 (2003).
    • 78. Kikawada T , Saito A , Kanamori Y et al. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl Acad. Sci. USA 104(28), 11585–11590 (2007).
    • 79. Oliver AE , Jamil K , Crowe JH , Tablin F . Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv. Technol. 2(1), 35–49 (2004).
    • 80. Campbell LH , Brockbank KGM . Culturing with trehalose produces viable endothelial cells after cryopreservation. Cryobiology 64(3), 240–244 (2012).
    • 81. Petrenko YA , Rogulska OY , Mutsenko VV , Petrenko AY . A sugar pretreatment as a new approach to the Me2SO- and xeno-free cryopreservation of human mesenchymal stromal cells. Cryo Letters 35(3), 239–246 (2014). • A seminal description of the development of a DMSO reduction strategy.
    • 82. Rogulska O , Petrenko Y , Petrenko A . DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology. 69(2), 265–276 (2017).
    • 83. Fuller BJ . Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25(6), 375–388 (2004).
    • 84. Zhao J , Hao H-N , Thomas RL , Lyman WD . An efficient method for the cryopreservation of fetal human liver hematopoeitic progenitor cells. Stem Cells 19(3), 212–218 (2001).
    • 85. Mitchell A , Rivas KA , Smith R III , Watts AE . Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95 % and DMSO at 10 or 5%. Stem Cell Res. Ther. 6, 231 (2015).
    • 86. Terada S , Nishimura T , Sasaki M , Yamada H , Miki M . Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology. 40(1/3), 3–12 (2002).
    • 87. Cao T-T , Zhang Y-Q . The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 49(6), 1029–1039 (2017).
    • 88. Sasaki M , Kato Y , Yamada H , Terada S . Development of a novel serum-free freezing medium for mammalian cells using the silk protein sericin. Biotechnol. Appl. Biochem. 42(2), 183 (2005).
    • 89. Miyamoto Y , Teramoto N , Hayashi S , Enosawa S . An improvement in the attaching capability of cryopreserved human hepatocytes by a proteinaceous high molecule, sericin, in the serum-free solution. Cell Transplant. 19(6–7), 701–706 (2010).
    • 90. Verdanova M , Pytlik R , Kalbacova MH . Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv. Biobank. 12(2), 99 (2014).
    • 91. Ohnishi K , Murakami M , Morikawa M , Yamaguchi A . Effect of the silk protein sericin on cryopreserved rat islets. J. Hepatobiliary. Pancreat. Sci. 19(4), 354–360 (2012).
    • 92. Nakasato SK . Evaluation of hetastarch. Clin. Pharm. 1(6), 509–514.
    • 93. Stolzing A , Naaldijk Y , Fedorova V , Sethe S . Hydroxyethylstarch in cryopreservation – mechanisms, benefits and problems. Transfus. Apher. Sci. 46(2), 137–147 (2012).
    • 94. Pasch J , Schiefer A , Heschel I , Rau G . Cryopreservation of keratinocytes in a monolayer. Cryobiology 39(2), 158–168 (1999).
    • 95. Pasch J , Schiefer A , Heschel I , Dimoudis N , Rau G . Variation of the HES concentration for the cryopreservation of keratinocytes in suspensions and in monolayers. Cryobiology 41(2), 89–96 (2000).
    • 96. Persidsky MD , Ellett MH . Hydroxyethyl starch as a cryopreservative for nucleated mammalian cells. Cryobiology 8(6), 586–588 (1971).
    • 97. Ashwood-Smith MJ , Warby C , Connor KW , Becker G . Low-temperature preservation of mammalian cells in tissue culture with polyvinylpyrrolidone (PVP), dextrans, and hydroxyethyl starch (HES). Cryobiology 9(5), 441–449 (1972).
    • 98. Allen ED , Weatherbee L , Spencer HH , Lindenauer SM , Permoad PA . Large unit red cell cryopreservation with hydroxyethyl starch. Cryobiology 13(5), 500–506 (1976).
    • 99. Sputtek A , Singbartl G , Langer R et al. Cryopreservation of red blood cells with the nonpenetrating cryoprotectant hydroxyethyl starch. CryoLetters 16, 283–288 (1995).
    • 100. Pogozhykh D , Pakhomova Y , Pervushina O , Hofmann N , Glasmacher B , Zhegunov G . Exploring the possibility of cryopreservation of feline and canine erythrocytes by rapid freezing with penetrating and non-penetrating cryoprotectants. PLoS ONE 12(1), e0169689 (2017).
    • 101. Takahashi T , Hirsh A , Erbe E , Williams RJ . Mechanism of cryoprotection by extracellular polymeric solutes. Biophys. J. 54(3), 509–518 (1988).
    • 102. Naaldijk Y , Staude M , Fedorova V , Stolzing A . Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol. 12(1), 49 (2012).
    • 103. Naaldijk Y , Johnson AA , Friedrich-Stöckigt A , Stolzing A . Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants. BMC Biotechnol. 16(1), 85 (2016).
    • 104. Strobel J , Hohensee F , Kuta P , Eckstein R , Zingsem J . Comparison of six different cryoprotective agents used for deep freezing and storage of CD34+ cells derived from cord blood and peripheral blood stem cell concentrates. Clin. Lab. 63(03/2017), (2017). • A modern study that demonstrates a good approach to comparison of different CPA admixtures.
    • 105. Stiff PJ , Murgo AJ , Zaroulis CG , DeRisi MF , Clarkson BD . Unfractionated human marrow cell cryopreservation using dimethylsulfoxide and hydroxyethyl starch. Cryobiology 20(1), 17–24 (1983).
    • 106. Ide K , Matsuura S , Fujino Y , Ohno K , Tsujimoto H . Investigation of various methods for the cryopreservation of canine bone marrow-derived CD34+ cells. J. Vet. Med. Sci. 70(11), 1211–1217 (2008).
    • 107. Hayakawa J , Joyal EG , Gildner JF et al. 5% dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10% DMSO. Transfusion 50(10), 2158–2166 (2010).
    • 108. Rowley SD , Feng Z , Chen L et al. A randomized Phase III clinical trial of autologous blood stem cell transplantation comparing cryopreservation using dimethylsulfoxide vs dimethylsulfoxide with hydroxyethylstarch. Bone Marrow Transplant. 31(11), 1043–1051 (2003).
    • 109. Ashwood-Smith MJ . Current concepts concerning radioprotective and cryoprotective properties of dimethyl sulfoxide in cellular systems. Ann. NY Acad. Sci. 243(1), 246–256 (1975).
    • 110. Petrenko YA . Cryopreservation of human embryonic liver cells using DMSO and high molecular weight polymers. Probl. Cryobiol. Cryomedicine. 0(3), 80–87 (2003).
    • 111. E Makashova O , O Babijchuk OB , L Zubova O , M Zubov P . Optimization of cryopreservation technique for human cord blood nucleated cells using combination of cryoprotectant DMSO and antioxidant N-acetyl-L-cysteine. Probl. Cryobiol. Cryomedicine. 26(4), 295–307 (2016).
    • 112. Fuller BJ , Shurey C , Lane N , Petrenko A , Green C . Hypothermic renal preservation with a sucrose/polyethylene glycol solution in a rabbit renal transplant model. Cryo Letters 27(2), 127–132 (2006).
    • 113. Semenchenko OA , Cherkashina DV , Tkacheva EN , Lebedinsky AS , Fuller BJ , Petrenko AY . 160. Sucrose-based preservation solution modified by PEG-8000 for cold storage of isolated rat liver. Cryobiology 53(3), 434–435 (2006).
    • 114. Babijchuk LA , Zemlianskykh NG . Optimization and advantages of washing-out method for erythrocytes cryopreservation with PEO-1500. Probl Cryobiol. 1, 35–41 (2001).
    • 115. Monroy B . Use of polyethyleneglycol for porcine islet cryopreservation. Cell Transplant. 6(6), 613–621 (1997).
    • 116. El-Shewy HM , William FK , Darrabie M , Collins BH , Opara EC . Polyvinyl pyrrolidone: a novel cryoprotectant in islet cell cryopreservation. Cell Transplant. 13(3), 237–243 (2004).
    • 117. Davies M , Huynh TT , Fulton G , Svendsen E , Brockbank FG , Hagen P-O . Controlling transplant vasculopathy in cryopreserved vein grafts with polyethylene glycol and glutathione during transport. Eur. J. Vasc. Endovasc. Surg. 17(6), 493–500 (1999).
    • 118. Liu Y , Xu X , Ma XH , Liu J , Cui ZF . Effect of various freezing solutions on cryopreservation of mesenchymal stem cells from different animal species. Cryo Letters. 32(5), 425–435 (2011).
    • 119. Liu Y , Xu X , Ma X , Martin-Rendon E , Watt S , Cui Z . Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol. Prog. 26(6), 1635–1643 (2010).
    • 120. Lee Y-A , Kim Y-H , Kim B-J et al. Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol1. Biol. Reprod. 89(5), 1–9 (2013).
    • 121. Mizrahi A , Moore GE . Partial substitution of serum in hematopoietic cell line media by synthetic polymers. Appl. Microbiol. 19(6), 906–910 (1970).
    • 122. Merten O-W , Petres S , Couvé E . A simple serum-free freezing medium for serum-free cultured cells. Biologicals 23(2), 185–189 (1995).
    • 123. Ohno T , Kurita K , Abe S , Eimori N , Ikawa Y . A simple freezing medium for serum-free cultured cells. Cytotechnology 1(3), 257–260 (1988).
    • 124. Thirumala S , Gimble JM , Devireddy RV . Evaluation of methylcellulose and dimethyl sulfoxide as the cryoprotectants in a serum-free freezing media for cryopreservation of adipose-derived adult stem cells. Stem Cells Dev. 19(4), 513–522 (2010).
    • 125. Thirumala S , Wu X , Gimble JM , Devireddy RV . Evaluation of polyvinylpyrrolidone as a cryoprotectant for adipose tissue-derived adult stem cells. Tissue Eng. Part C Methods. 16(4), 783–792 (2010).
    • 126. Shivakumar SB , Bharti D , Jang SJ et al. Cryopreservation of human wharton's jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. Int. J. Stem Cells. 8(2), 155–169 (2015).
    • 127. Thirumala S , Gimble JM , Devireddy RV . Cryopreservation of stromal vascular fraction of adipose tissue in a serum-free freezing medium. J. Tissue Eng. Regen. Med. 4(3), 224–232 (2010).
    • 128. Loretz LJ , Li AP , Flye MW , Wilson AGE . Optimization of cryopreservation procedures for rat and human hepatocytes. Xenobiotica 19(5), 489–498 (1989).
    • 129. Gómez-Lechón MJ , Lahoz A , Jiménez N , Vicente Castell J , Donato MT . Cryopreservation of rat, dog and human hepatocytes: influence of preculture and cryoprotectants on recovery, cytochrome P450 activities and induction upon thawing. Xenobiotica 36(6), 457–472 (2006).
    • 130. Miyagi-Shiohira C , Kurima K , Kobayashi N et al. Cryopreservation of adipose-derived mesenchymal stem cells. Cell Med. 8(1–2), 3–7 (2015).
    • 131. Matsumura K , Hayashi F , Nagashima T , Hyon SH . Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J. Biomater. Sci. Polym. Ed. 24(12), 1484–1497 (2013).
    • 132. Naaldijk Y , Friedrich-Stöckigt A , Sethe S , Stolzing A . Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation. J. Tissue Eng. Regen. Med. 10(10), E354–E364 (2016).
    • 133. Meryman HT . Cryopreservation of living cells: principles and practice. Transfusion 47(5), 935–945 (2007).
    • 134. Elliott GD , Wang S , Fuller BJ . Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91 (2017).
    • 135. Davidson AF , Benson JD , Higgins AZ . Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Theor. Biol. Med. Model. 11, 13 (2014).
    • 136. D Benson J . Modeling and optimization of cryopreservation [Internet]. Springer, NY, USA, 83–120 (2015).
    • 137. Morris C , de Wreede L , Scholten M et al. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion 54(10), 2514–2522 (2014).
    • 138. Rubinstein P , Dobrila L , Rosenfield RE et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc. Natl Acad. Sci. USA 92(22), 10119–10122 (1995).
    • 139. Beaujean F , Hartmann O , Kuentz M , Le Forestier C , Divine M , Duedari N . A simple efficient washing procedure for cryopreserved human hematopoietic stem cells prior to reinfusion. Bone Marrow Transplant. 8(4), 291–294 (1991).
    • 140. Fry LJ , Querol S , Gomez SG , McArdle S , Rees R , Madrigal JA . Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sang. 109(2), 181–190 (2015).
    • 141. Rowley SD , Feng Z , Yadock D , Holmberg L , MacLeod B , Heimfeld S . Post-thaw removal of DMSO does not completely abrogate infusional toxicity or the need for pre-infusion histamine blockade. Cytotherapy 1(6), 439–446 (1999).
    • 142. Decot V , Houzé P , Stoltz J-F , Bensoussan D . Quantification of residual dimethylsulfoxide after washing cryopreserved stem cells and thawing tissue grafts. Biomed. Mater. Eng. 19(4–5), 293–300 (2009).
    • 143. Rodriguez L , Azqueta C , Azzalin S , Garcia J , Querol S . Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system*. Vox Sang. 87(3), 165–172 (2004).
    • 144. Scerpa MC , Daniele N , Landi F et al. Automated washing of human progenitor cells: evaluation of apoptosis and cell necrosis. Transfus. Med. 21(6), 402–407 (2011).
    • 145. Zhu F , Heditke S , Kurtzberg J et al. Hydroxyethyl starch as a substitute for dextran 40 for thawing peripheral blood progenitor cell products. Cytotherapy. 17(12), 1813–1819 (2015).
    • 146. Foïs E , Desmartin M , Benhamida S et al. Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant. 40(9), 831–835 (2007).
    • 147. Abonnenc M , Pesse B , Tissot J-D , Barelli S , Lion N . Automatic washing of thawed haematopoietic progenitor cell grafts: a preclinical evaluation. Vox Sang. 112(4), 367–378 (2017).
    • 148. Valeri CR , Ragno G , Van Houten P et al. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Transfusion 45(10), 1621–1627 (2005).
    • 149. Calmels B , Houzé P , Hengesse J-C , Ducrot T , Malenfant C , Chabannon C . Preclinical evaluation of an automated closed fluid management device: cytomateTM, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant. 31(9), 823–828 (2003).
    • 150. Perotti CG , Fante C Del , Viarengo G et al. A new automated cell washer device for thawed cord blood units. Transfusion 44(6), 900–906 (2004).
    • 151. Lemarie C , Calmels B , Malenfant C et al. Clinical experience with the delivery of thawed and washed autologous blood cells, with an automated closed fluid management device: cytoMate. Transfusion 45(5), 737–742 (2005).
    • 152. Rodríguez L , Velasco B , García J , Martín-Henao GÁ . Evaluation of an automated cell processing device to reduce the dimethyl sulfoxide from hematopoietic grafts after thawing. Transfusion 45(8), 1391–1397 (2005).
    • 153. Mfarrej B , Bouchet G , Couquiaud J et al. Pre-clinical assessment of the Lovo device for dimethyl sulfoxide removal and cell concentration in thawed hematopoietic progenitor cell grafts. Cytotherapy. 19(12), 1501–1508 (2017).
    • 154. Ding W , Zhou X , Heimfeld S , Reems J-A , Gao D . A steady-state mass transfer model of removing CPAs from cryopreserved blood with hollow fiber modules. J. Biomech. Eng. 132(1), 011002 (2009).
    • 155. Arnaud F , Kapnik E , Meryman HT . Use of hollow fiber membrane filtration for the removal of DMSO from platelet concentrates. Platelets 14(3), 131–137 (2003).
    • 156. Bianco P , Robey PG , Simmons PJ . Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2(4), 313 (2008).
    • 157. Sipp D , Robey PG , Turner L . Clear up this stem-cell mess. Nature 561(7724), 455–457 (2018).
    • 158. Tostoes R , Dodgson JR , Weil B , Gerontas S , Mason C , Veraitch F . A novel filtration system for point of care washing of cellular therapy products. J. Tissue Eng. Regen. Med. 11(11), 3157–3167 (2017).
    • 159. Memon K , Cheng Y , Panhwar F et al. A low-cost easy-to-fabricate sandwich-structured microdevice for controllable removal of extracellular cryoprotective agents with high efficiency. Cryo Letters 39(1), 7–13
    • 160. Song YS , Moon S , Hulli L , Hasan SK , Kayaalp E , Demirci U . Microfluidics for cryopreservation. Lab Chip. 9(13), 1874 (2009).
    • 161. Hanna J , Hubel A , Lemke E . Diffusion-based extraction of DMSO from a cell suspension in a three stream, vertical microchannel. Biotechnol. Bioeng. 109(9), 2316–2324 (2012).
    • 162. Park S , Wijethunga PAL , Moon H , Han B . On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device. Lab Chip. 11(13), 2212–2221 (2011).
    • 163. Fleming KK , Longmire EK , Hubel A . Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel. J. Biomech. Eng. 129(5), 703 (2006).
    • 164. Fleming Glass KK , Longmire EK , Hubel A . Optimization of a microfluidic device for diffusion-based extraction of DMSO from a cell suspension. Int. J. Heat Mass Transf. 51(23–24), 5749–5757 (2008).
    • 165. Xu X , Liu Y , Cui ZF . Effects of cryopreservation on human mesenchymal stem cells attached to different substrates. J. Tissue Eng. Regen. Med. 8(8), 664–672 (2014).
    • 166. Xu X , Liu Y , Cui Z , Wei Y , Zhang L . Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J. Biotechnol. 162(2–3), 224–231 (2012).
    • 167. Bissoyi A , Bit A , Singh BK , Singh AK , Patra PK . Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow. Sci. Rep. 6(1), 35416 (2016).
    • 168. Costa PF , Dias AF , Reis RL , Gomes ME . Cryopreservation of cell/scaffold tissue-engineered constructs. Tissue Eng. Part C. Methods. 18(11), 852–858 (2012).
    • 169. Petrenko YA , Petrenko AY , Martin I , Wendt D . Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts. Cryobiology 76, 150–153 (2017).
    • 170. Katsen-Globa A , Meiser I , Petrenko YA et al. Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. J. Mater. Sci. Mater. Med. 25(3), 857–871 (2014).
    • 171. Bissoyi A , Pramanik K , Panda NN , Sarangi SK . Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs. Cryobiology 68(3), 332–342 (2014).
    • 172. Mutsenko V V , Gryshkov O , Lauterboeck L et al. Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int. J. Biol. Macromol. 104, 1955–1965 (2017).
    • 173. Pasley S , Zylberberg C , Matosevic S . Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media. Immunol. Lett. 192, 35–41 (2017).
    • 174. Edashige K . Permeability of the plasma membrane to water and cryoprotectants in mammalian oocytes and embryos: its relevance to vitrification. Reprod. Med. Biol. 16(1), 36–39 (2017).
    • 175. Best BP . Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 18(5), 422–436 (2015).
    • 176. Sydykov B , Oldenhof H , de Oliveira Barros L , Sieme H , Wolkers WF . Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions. Biochim. Biophys. Acta - Biomembr. 1860(2), 467–474 (2018).
    • 177. Lee Y , Pincus PA , Hyeon C . Effects of dimethyl sulfoxide on surface water near phospholipid bilayers. Biophys. J. 111(11), 2481–2491 (2016).
    • 178. Wang X , Hua T-C , Sun D-W , Liu B , Yang G , Cao Y . Cryopreservation of tissue-engineered dermal replacement in Me2SO: toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology 55(1), 60–65 (2007).
    • 179. Babiak I , Glogowski J , Luczynski MJ , Luczynski M , Demianowicz W . The effect of egg yolk, low density lipoproteins, methylxanthines and fertilization diluent on cryopreservation efficiency of northern pike (Esox lucius) spermatozoa. Theriogenology. 52(3), 473–479 (1999).
    • 180. Purdy PH , Graham JK . Membrane modification strategies for cryopreservation [Internet]. In: Methods in Molecular Biology (Clifton, N.J.) 337–342 (2015).
    • 181. Xu X , Cowley S , Flaim CJ , James W , Seymour LW , Cui Z . Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnol. Prog. 26(3), 781–788 (2009).
    • 182. Du T , Chao L , Zhao S et al. Successful cryopreservation of whole sheep ovary by using DMSO-free cryoprotectant. J. Assist. Reprod. Genet. 32(8), 1267–1275 (2015).
    • 183. Shivakumar SB , Bharti D , Jang S-J et al. Cryopreservation of human Wharton's jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. Int. J. Stem Cells. 8(2), 155–169 (2015).
    • 184. Novogrodsky A , Ravid A , Rubin AL , Stenzel KH . Hydroxyl radical scavengers inhibit lymphocyte mitogenesis. Proc. Natl Acad. Sci. USA 79(4), 1171–1174 (1982).
    • 185. Sanmartín-Suárez C , Soto-Otero R , Sánchez-Sellero I , Méndez-Álvarez E . Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J. Pharmacol. Toxicol. Methods 63(2), 209–215 (2011).
    • 186. Simic MG , Bergtold DS , Karam LR . Generation of oxy radicals in biosystems. Mutat. Res. 214(1), 3–12 (1989).
    • 187. Fuller B , Dijk S , Butler P , Hoang V , Davidson B . Pro-inflammatory agents accumulate during donor liver cold preservation: a study on increased adhesion molecule expression and abrogation by curcumin in cultured endothelial cells. Cryobiology 46(3), 284–288 (2003).
    • 188. Amidi F , Pazhohan A , Shabani Nashtaei M , Khodarahmian M , Nekoonam S . The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 17(4), 745–756 (2016).
    • 189. Xue W-J , Luo X-H , Li Y et al. Effects of astragalosides on cultured islets after cryopreservation in rats. Transplant. Proc. 43(10), 3908–3912 (2011).
    • 190. Fang L , Bai C , Chen Y et al. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Cryobiology 69(3), 386–393 (2014).
    • 191. Lu X , Zhang Y , Bai H , Liu J , Li J , Wu B . Mitochondria-targeted antioxidant MitoTEMPO improves the post-thaw sperm quality. Cryobiology 80, 26–29 (2018).
    • 192. GKP D , Sc SRB , Sc ATM et al. Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw – induced DNA damage. Fertil. Steril. 95(3), 1149–1151 (2011).
    • 193. Niki E . Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic. Biol. Med. 66, 3–12 (2014).
    • 194. Bissoyi A , Nayak B , Pramanik K , Sarangi SK . Targeting cryopreservation-induced cell death: a review. Biopreserv. Biobank. 12(1), 23–34 (2014).
    • 195. Beirão J , Zilli L , Vilella S , Cabrita E , Schiavone R , Herráez MP . Improving sperm cryopreservation with antifreeze proteins: effect on Gilthead Seabream (Sparus aurata) plasma membrane lipids1. Biol. Reprod. 86(2), 59 (2012).
    • 196. Biggs CI , Bailey TL , Ben Graham B , Stubbs C , Fayter A , Gibson MI . Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 8(1), 1546 (2017).
    • 197. Arutyunyan IV , Strokova SO , Makarov AV et al. DMSO-free cryopreservation of human umbilical cord tissue. Bull. Exp. Biol. Med. 166(1), 155–162 (2018).
    • 198. Pollock K , Budenske JW , McKenna DH , Dosa PI , Hubel A . Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells. J. Tissue Eng. Regen. Med. 11(10), 2806–2815 (2017).
    • 199. Svalgaard JD , Talkhoncheh MS , Haastrup EK et al. Pentaisomaltose, an alternative to DMSO. Engraftment of cryopreserved human CD34 + cells in immunodeficient NSG mice. Cell Transplant. 27(9), 1407–1412 (2018).
    • 200. Zhai H , Yang J , Zhang J et al. Natural zwitterionic L-Carnitine as efficient cryoprotectant for solvent-free cell cryopreservation. Biochem. Biophys. Res. Commun. 489(1), 76–82 (2017).
    • 201. Yang J , Cai N , Zhai H , Zhang J , Zhu Y , Zhang L . Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Sci. Rep. 6(1), 6 (2016).
    • 202. Vrana NE , Matsumura K , Hyon S-H et al. Cell encapsulation and cryostorage in PVA-gelatin cryogels: incorporation of carboxylated ε-poly-L-lysine as cryoprotectant. J. Tissue Eng. Regen. Med. 6(4), 280–290 (2012).
    • 203. Freimark D , Sehl C , Weber C et al. Systematic parameter optimization of a Me2SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 63(2), 67–75 (2011).
    • 204. Matsumura K , Bae JY , Hyon SH . Polyampholytes as cryoprotective agents for mammalian cell cryopreservation. Cell Transplant. 19(6–7), 691–699 (2010).
    • 205. Dannull J , Haley NR , Archer G et al. Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J. Clin. Invest. 123(7), 3135–3145 (2013).
    • 206. Greene SJ , Epstein SE , Kim RJ et al. Rationale and design of a randomized controlled trial of allogeneic mesenchymal stem cells in patients with nonischemic cardiomyopathy. J. Cardiovasc. Med. 18(4), 283–290 (2017).
    • 207. Safinia N , Vaikunthanathan T , Fraser H et al. Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget. 7(7), 7563–7577 (2016).
    • 208. Lee MC , Ha C-W , Elmallah RK et al. A placebo-controlled randomised trial to assess the effect of TGF-ß1-expressing chondrocytes in patients with arthritis of the knee. Bone Joint J. 97-B(7), 924–932 (2015).
    • 209. DiGiusto DL , Cannon PM , Holmes MC et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol. Ther. Methods Clin. Dev. 3, 16067 (2016).
    • 210. Brown CE , Alizadeh D , Starr R et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375(26), 2561–2569 (2016).
    • 211. Gardner RA , Finney O , Annesley C et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129(25), 3322–3331 (2017). • A modern citation for DMSO in use for preservation of cell therapies showing it is still embedded in clinical practice and is unlikely to be replaced quickly.
    • 212. Kastrup J , Haack-Sørensen M , Juhl M et al. Cryopreserved off-the-shelf allogeneic adipose-derived stromal cells for therapy in patients with ischemic heart disease and heart failure-a safety study. Stem Cells Transl. Med. 6(11), 1963–1971 (2017).
    • 213. Fraser H , Safinia N , Grageda N et al. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol. Ther. - Methods Clin. Dev. 8, 198–209 (2018).
    • 214. Kilbride P , Lamb S , Milne S et al. Spatial considerations during cryopreservation of a large volume sample. Cryobiology 73(1), 47–54 (2016).
    • 215. Creasey AA , Stacey G , Bharti K , Sato Y , Lubiniecki A . A strategic road map to filing a Biologics License Application for a pluripotent stem cell derived therapeutic product. Biologicals 59, 68–71 (2019).
    • 216. ICH Harmonized Tripartite Guideline. Comparability of biotechnological/biological products subject to changes in their manufacturing process: ICH (2004). https://database.ich.org/sites/default/files/Q5E%20Guideline.pdf
    • 217. Williams DJ , Archer R , Archibald P et al. Comparability: manufacturing, characterization and controls, report of a UK Regenerative Medicine Platform Pluripotent Stem Cell Platform Workshop, Trinity Hall, Cambridge, 14–15 September 2015. Regen. Med. 11(5), 483–492 (2016).
    • 218. ICH Harmonized Tripartite Guideline. Pharmaceutical Development: ICH (2009). https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf
    • 219. Mazur P , Leibo SP , Chu EHY . A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells. Exp. Cell Res. 71(2), 345–355 (1972).
    • 220. Stacey GN , Connon CJ , Coopman K et al. Preservation and stability of cell therapy products: recommendations from an expert workshop. Regen. Med. 12(5), 553–564 (2017). • An expert workshop review making key recommendations to progress the development of preservation technologies in support of new cell-based therapies.