We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An insight into the whole transcriptome profile of four tissue-specific human mesenchymal stem cells

    Dana Alhattab

    Cell Therapy Center, The University of Jordan, Amman, Jordan

    Authors contributed equally

    Search for more papers by this author

    ,
    Fatima Jamali

    Cell Therapy Center, The University of Jordan, Amman, Jordan

    Authors contributed equally

    Search for more papers by this author

    ,
    Dema Ali

    Cell Therapy Center, The University of Jordan, Amman, Jordan

    ,
    Hana Hammad

    Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan

    ,
    Sofia Adwan

    Cell Therapy Center, The University of Jordan, Amman, Jordan

    ,
    Reem Rahmeh

    Cell Therapy Center, The University of Jordan, Amman, Jordan

    ,
    Omar Samarah

    Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan

    ,
    Bareqa Salah

    General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, The University of Jordan, Amman, Jordan

    ,
    Mohammad Hamdan

    Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan

    &
    Abdalla Awidi

    *Author for correspondence:

    E-mail Address: abdalla.awidi@gmail.com

    Cell Therapy Center, The University of Jordan, Amman, Jordan

    Department of Hematology & Oncology, Faculty of Medicine, The University of Jordan, Amman, Jordan

    Published Online:https://doi.org/10.2217/rme-2018-0137

    Aim: Variations in the clinical outcomes using mesenchymal stem cells (MSCs) treatments exist, reflecting different origins and niches. To date, there is no consensus on the best source of MSCs most suitable to treat a specific disease. Methods: Total transcriptome analysis of human MSCs was performed. MSCs were isolated from two adult sources bone marrow, adipose tissue and two perinatal sources umbilical cord and placenta. Results: Each MSCs type possessed a unique expression pattern that reflects an advantage in terms of their potential therapeutic use. Advantages in immune modulation, neurogenesis and other aspects were found. Discussion: This study is a milestone for evidence-based choice of the type of MSCs used in the treatment of diseases.

    References

    • 1 Wei X, Yang X, Han Z-P, Qu F-F, Shao L, Shi Y-F. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol. Sin. 34(6), 747 (2013).
    • 2 Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5), 1669–1675 (2004).
    • 3 De Coppi P, Bartsch G Jr, Siddiqui MM et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25(1), 100 (2007).
    • 4 Francis MP, Sachs PC, Elmore LW, Holt SE. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6(1), 11–14 (2010).
    • 5 Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J. Cell. Biochem. 113(5), 1460–1469 (2012).
    • 6 Watson N, Divers R, Kedar R et al. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 17(1), 18–24 (2015).
    • 7 Gao LR, Zhang NK, Ding QA et al. Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton's jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transplant. 22(10), 1883–1900 (2013).
    • 8 Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells Dev. 19(1), 117–130 (2010).
    • 9 Yu S, Long J, Yu J et al. Analysis of differentiation potentials and gene expression profiles of mesenchymal stem cells derived from periodontal ligament and Wharton's jelly of the umbilical cord. Cells Tissues Organs 197(3), 209–223 (2013).
    • 10 Fong C-Y, Chak L-L, Biswas A et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 7(1), 1–16 (2011).
    • 11 Secco M, Moreira YB, Zucconi E et al. Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev. 5(4), 387–401 (2009).
    • 12 Tsai MS, Hwang SM, Chen KD et al. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 25(10), 2511–2523 (2007).
    • 13 Al-Najar M, Khalil H, Al-Ajlouni J et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a Phase I/II study. J. Orthop. Surg. 12(1), 190 (2017).
    • 14 Pandamooz S, Hadipour A, Akhavan-Niaki H et al. Short exposure to collagenase and coculture with mouse embryonic pancreas improve human dermal fibroblast culture. Biotechnol. Appl. Biochem. 59(3), 254–261 (2012).
    • 15 Feng B, Jiang J, Kraus P et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol. 11(2), 197 (2009).
    • 16 Nichols T, Hayasaka S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12(5), 419–446 (2003).
    • 17 Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–15550 (2005).
    • 18 Kolle G, Ho M, Zhou Q et al. Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. Stem Cells 27(10), 2446–2456 (2009).
    • 19 Gedye CA, Hussain A, Paterson J et al. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity. PLoS ONE 9(8), e105602 (2014).
    • 20 Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las Rivas J. Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. BMC Genomics 17(1), 944 (2016).
    • 21 Heo JS, Choi Y, Kim H-S, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int. J. Mol. Med. 37(1), 115–125 (2016).
    • 22 Jääger K, Islam S, Zajac P, Linnarsson S, Neuman T. RNA-seq analysis reveals different dynamics of differentiation of human dermis-and adipose-derived stromal stem cells. PLoS ONE 7(6), e38833 (2012).
    • 23 Lorenz K, Sicker M, Schmelzer E et al. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp. Dermatol. 17(11), 925–932 (2008).
    • 24 Burnouf T, Strunk D, Koh MB, Schallmoser KJB. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 76, 371–387 (2016).
    • 25 Doucet C, Ernou I, Zhang Y et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J. Cell. Physiol. 205(2), 228–236 (2005).
    • 26 Flemming A, Schallmoser K, Strunk D, Stolk M, Volk H-D, Seifert M. Immunomodulative efficacy of bone marrow-derived mesenchymal stem cells cultured in human platelet lysate. J. Clin. Immunol. 31(6), 1143–1156 (2011).
    • 27 Becherucci V, Piccini L, Casamassima S et al. Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience. Stem Cell. Res. Ther. 9(1), 124 (2018).
    • 28 Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 11(1), 146 (2013).
    • 29 Buyl K, Vanhaecke T, Desmae T et al. Evaluation of a new standardized enzymatic isolation protocol for human umbilical cord-derived stem cells. Toxicol. In Vitro 29(6), 1254–1262 (2015).
    • 30 Seifert A, Werheid DF, Knapp SM, Tobiasch E. Role of Hox genes in stem cell differentiation. World J. Stem Cells 7(3), 583 (2015).
    • 31 Yang HJ, Xia YY, Wang L et al. A novel role for neural cell adhesion molecule in modulating insulin signaling and adipocyte differentiation of mouse mesenchymal stem cells. J. Cell Sci. 124(pt 15), 2552–2560 (2011).
    • 32 Kessenbrock K, Wang C-Y, Werb Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 44, 184–190 (2015).
    • 33 Klein G, Schmal O, Aicher WK. Matrix metalloproteinases in stem cell mobilization. Matrix Biol. 44, 175–183 (2015).
    • 34 Lee RH, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 14(4–6), 311–324 (2004).
    • 35 Prall WC, Czibere A, Jager M et al. Age-related transcription levels of KU70, MGST1 and BIK in CD34+ hematopoietic stem and progenitor cells. Mech. Ageing Dev. 128(9), 503–510 (2007).
    • 36 Hart ML, Rusch E, Kaupp M, Nieselt K, Aicher WK. Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in placenta and bone marrow-derived mesenchymal stromal cells. Stem Cell Rev. 13(2), 258–266 (2017).
    • 37 Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor α 2-targeted glioblastoma therapy. Neuro-Oncol. 16(10), 1304–1312 (2014).
    • 38 Shukla S, MacLennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int. J. Cancer 121(7), 1424–1432 (2007).
    • 39 Karaöz E, Demircan PÇ, Erman G, Güngörürler E, Sarıboyacı AE. Comparative analyses of immunosuppressive characteristics of bone-marrow, Wharton's Jelly, and adipose tissue-derived human mesenchymal stem cells. Turk. J. Hematol. 34(3), 213 (2017).
    • 40 Wang Q, Yang Q, Wang Z et al. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Hum. Vaccin. Immunother. 12(1), 85–96 (2016).
    • 41 Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int. J. Mol. Med. 34(3), 695–704 (2014).
    • 42 Ghosh AK, Sinha D, Mukherjee S, Biswas R, Biswas T. LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8(+) T cells. Cytokine 73(1), 44–52 (2015).
    • 43 Rashedi I, Gomez-Aristizabal A, Wang XH, Viswanathan S, Keating A. TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via notch signaling. Stem Cells 35(1), 265–275 (2017).
    • 44 Nemoto Y, Kanai T, Takahara M et al. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut 62(8), 1142–1152 (2013).
    • 45 Fong CY, Chak LL, Biswas A et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 7(1), 1–16 (2011).
    • 46 Amouzegar A, Mittal SK, Sahu A, Sahu SK, Chauhan SK. Mesenchymal stem cells modulate differentiation of myeloid progenitor cells during inflammation. Stem Cells 35(6), 1532–1541 (2017).
    • 47 Pietilä M, Lehtonen S, Tuovinen E et al. CD200 positive human mesenchymal stem cells suppress TNF-α secretion from CD200 receptor positive macrophage-like cells. PLoS ONE 7(2), e31671 (2012).
    • 48 Cho K-A, Park M, Kim Y-H, Woo S-Y, Ryu K-H. RNA sequencing reveals a transcriptomic portrait of human mesenchymal stem cells from bone marrow, adipose tissue, and palatine tonsils. Sci. Rep. 7(1), 17114 (2017).
    • 49 Fitzsimmons RE, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120267/
    • 50 Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11), 2739–2749 (2007).
    • 51 Hopkins A, Mirzayans F, Berry F. Foxc1 expression in early osteogenic differentiation is regulated by BMP4-SMAD activity. J. Cell. Biochem. 117(7), 1707–1717 (2016).
    • 52 Mirzayans F, Lavy R, Penner-Chea J, Berry FB. Initiation of early osteoblast differentiation events through the direct transcriptional regulation of Msx2 by FOXC1. PLoS ONE 7(11), e49095 (2012).
    • 53 Wu M, Chen G, Li Y-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Research 4, 16009 (2016).
    • 54 Sakai K, Kimata K, Sato T et al. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 plays a critical role in chondroitin sulfate synthesis in cartilage. J. Biol. Chem. (2006). www.jbc.org/content/282/6/4152.full.
    • 55 Hoover DJ, Zhu V, Chen R et al. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells. PLoS ONE 8(5), e62491 (2013).
    • 56 Johansen JS, Høyer PE, Larsen LA, Price PA, Møllgård K. YKL-40 protein expression in the early developing human musculoskeletal system. J. Histochem. Cytochem. 55(12), 1213–1228 (2007).
    • 57 Cleary MA, Van Osch GJM, Brama PA, Hellingman CA, Narcisi R. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J. Tissue Eng. Regen. Med. 9(4), 332–342 (2015).
    • 58 Green JD, Tollemar V, Dougherty M et al. Multifaceted signaling regulators of chondrogenesis: implications in cartilage regeneration and tissue engineering. Genes Dis. 2(4), 307–327 (2015).
    • 59 Oka K, Oka S, Sasaki T et al. The role of TGF-β signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev. Biol. 303(1), 391–404 (2007).
    • 60 Yu L, Liu H, Yan M et al. Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton. Dev. Biol. 306(2), 549–559 (2007).
    • 61 Akinci B, Meral R, Oral EA. Update on therapeutic options in lipodystrophy. Curr. Diab. Rep. 18(12), 139 (2018).
    • 62 Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 86(6), 588–610 (2010).
    • 63 Rittchen S, Boyd A, Burns A et al. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF). Biomaterials 56, 78–85 (2015).
    • 64 Kang C-M, Kim H, Song JS et al. Genetic comparison of stemness of human umbilical cord and dental pulp. Stem Cells Int. (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819116/
    • 65 Gao QQ, McNally EM. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 5(3), 1223–1239 (2011).
    • 66 Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2(12), 731–740 (2003).
    • 67 Mizuhashi K, Kanamoto T, Moriishi T et al. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum. Mol. Genet. 23(11), 2953–2967 (2014).
    • 68 Worzfeld T, Offermanns S. Semaphorins and plexins as therapeutic targets. Nat. Rev. Drug Discov. 13, 603 (2014).
    • 69 Polisetti N, Agarwal P, Khan I, Kondaiah P, Sangwan VS, Vemuganti GK. Gene expression profile of epithelial cells and mesenchymal cells derived from limbal explant culture. Mol. Vis. 16, 1227–1240 (2010).
    • 70 Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las Rivas J. Transcriptomic portrait of human mesenchymal stromal/stem cells isolated from bone marrow and placenta. BMC Genomics 15(1), 910 (2014).
    • 71 Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10(2), 116 (2009).
    • 72 Heinrich E-M, Dimmeler S. MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ. Res. 110(7), 1014–1022 (2012).
    • 73 Raza U, Saatci Ö, Uhlmann S et al. The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial–mesenchymal transition in breast cancer. Oncotarget 7(31), 49859 (2016).
    • 74 Zhang J-X, Chen Z-H, Xu Y et al. Downregulation of microRNA-644a promotes esophageal squamous cell carcinoma aggressiveness and stem cell–like phenotype via dysregulation of PITX2. Clin. Cancer Res. 23(1), 298–310 (2017).
    • 75 Liang T, Guo L, Liu C. Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. Biomed. Res. Int. (2012). www.hindawi.com/journals/bmri/2012/679563/.
    • 76 Jasinski-Bergner S, Reches A, Stoehr C et al. Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget 7(18), 26866–26878 (2016).
    • 77 Sun Y, Yang Z, Zheng B et al. A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ. Res. 121(6), 628–635 (2017).