We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Bone tissue engineering in the greater omentum is enhanced by a periosteal transplant in a miniature pig model

    Hendrik Naujokat

    *Author for correspondence: Tel.: +49 0431 5002 6140; Fax: +49 0431 5002 6006;

    E-mail Address: naujokat@mkg.uni-kiel.de

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    ,
    Maximilian Lipp

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    ,
    Yahya Açil

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    ,
    Henning Wieker

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    ,
    Falk Birkenfeld

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    ,
    Andre Sengebusch

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    ,
    Florian Böhrnsen

    Department of Oral & Maxillofacial Surgery, University Hospital of Göttingen, Robert-Koch-Straße 40, 37099 Göttingen, Germany

    &
    Jörg Wiltfang

    Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany

    Published Online:https://doi.org/10.2217/rme-2018-0031

    Aim: Reconstruction of bone defects with autologous grafts has certain disadvantages. The aim of this study is to introduce a new type of living bioreactor for engineering of bone flaps and to evaluate the effect of different barrier membranes. Materials & methods: Scaffolds loaded with bone morphogenetic proteins and bone marrow aspirate wrapped with either a collagen membrane or a periosteal flap were implanted in the greater omentum of miniature pigs. Results: Both histological and radiographic evaluation showed proven bone formation and increased density after 8 and 16 weeks, with an enhanced effect of the periosteal transplant. Conclusion: The greater omentum is a suitable bioreactor for bone tissue engineering. Endocultivation is both an innovative and promising approach in regenerative medicine.

    The principle of endocultivation is the translation of tissue engineering techniques to the living organism to both stimulate and guide its regenerative capacity. An individual's own body as a bioreactor promotes tissue regeneration. Bone mineral blocks are loaded with growth factors and precursor cells and wrapped with barrier membranes. Scaffolds are implanted in the greater omentum where both bone formation and vascularization occur.

    References

    • 1 Wang KH, Inman JC, Hayden RE. Modern concepts in mandibular reconstruction in oral and oropharyngeal cancer. Curr. Opin. Otolaryngol. Head Neck Surg. 19(2), 119–124 (2011).
    • 2 Berzofsky C, Shin E, Mashkevich G. Leg compartment syndrome after fibula free flap. Otolaryngol. Head Neck Surg. 148(1), 172–173 (2013).
    • 3 Zimmermann CE, Borner BI, Hasse A, Sieg P. Donor site morbidity after microvascular fibula transfer. Clin. Oral. Investig. 5(4), 214–219 (2001).
    • 4 Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 324(5935), 1673–1677 (2009).
    • 5 Heliotis M, Ripamonti U, Ferretti C, Kerawala C, Mantalaris A, Tsiridis E. The basic science of bone induction. Br. J. Oral Maxillofac. Surg. 47(7), 511–514 (2009).
    • 6 Xu T, Yu CY, Sun JJ et al. Bone morphogenetic protein-4-induced epithelial–mesenchymal transition and invasiveness through Smad1-mediated signal pathway in squamous cell carcinoma of the head and neck. Arch. Med. Res. 42(2), 128–137 (2011).
    • 7 Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG. Wound healing after radiation therapy: review of the literature. Radiat. Oncol. 7(7), 162 (2012).
    • 8 Warnke PH, Springer IN, Wiltfang J et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364(9436), 766–770 (2004).
    • 9 Terheyden H, Knak C, Jepsen S, Palmie S, Rueger DR. Mandibular reconstruction with a prefabricated vascularized bone graft using recombinant human osteogenic protein-1: an experimental study in miniature pigs. Part I: prefabrication. Int. J. Oral Maxillofac. Surg. 30(5), 373–379 (2001).
    • 10 Terheyden H, Menzel C, Wang H, Springer IN, Rueger DR, Acil Y. Prefabrication of vascularized bone grafts using recombinant human osteogenic protein-1–part 3: dosage of rhOP-1, the use of external and internal scaffolds. Int. J. Oral Maxillofac. Surg. 33(2), 164–172 (2004).
    • 11 Warnke PH, Springer IN, Acil Y et al. The mechanical integrity of in vivo engineered heterotopic bone. Biomaterials 27(7), 1081–1087 (2006).
    • 12 Becker ST, Bolte H, Schunemann K et al. Endocultivation: the influence of delayed vs. simultaneous application of BMP-2 onto individually formed hydroxyapatite matrices for heterotopic bone induction. Int. J. Oral Maxillofac. Surg. 41(9), 1153–1160 (2012).
    • 13 Beck-Broichsitter BE, Becker ST, Seitz H, Wiltfang J, Warnke PH. Endocultivation: Histomorphological effects of repetitive rhBMP-2 application into prefabricated hydroxyapatite scaffolds at extraskeletal sites. J. Craniomaxillofac. Surg. 43(6), 981–988 (2015).
    • 14 Heliotis M, Lavery KM, Ripamonti U, Tsiridis E, Di Silvio L. Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularised pedicled bone flap in the human chest. Int. J. Oral Maxillofac. Surg. 35(3), 265–269 (2006).
    • 15 Kokemueller H, Spalthoff S, Nolff M et al. Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int. J. Oral Maxillofac. Surg. 39(4), 379–387 (2010).
    • 16 Bayles SW, Hayden RE. Gastro-omental free flap reconstruction of the head and neck. Arch. Facial Plast. Surg. 10(4), 255–259 (2008).
    • 17 Patel RS, Gilbert RW. Utility of the gastro-omental free flap in head and neck reconstruction. Curr. Opin. Otolaryngol. Head Neck Surg. 17(4), 258–262 (2009).
    • 18 Kamei Y, Toriyama K, Takada T, Yagi S. Tissue-engineering bone from omentum. Nagoya J. Med. Sci. 72(3-4), 111–117 (2010).
    • 19 Bigham-Sadegh A, Mirshokraei P, Karimi I, Oryan A, Aparviz A, Shafiei-Sarvestani Z. Effects of adipose tissue stem cell concurrent with greater omentum on experimental long-bone healing in dog. Connect Tissue Res. 53(4), 334–342 (2012).
    • 20 Sadegh AB, Basiri E, Oryan A, Mirshokraei P. Wrapped omentum with periosteum concurrent with adipose derived adult stem cells for bone tissue engineering in dog model. Cell Tissue Bank 15(1), 127–137 (2014).
    • 21 Birkenfeld F, Sengebusch A, Volschow C et al. Endocultivation of scaffolds with recombinant human bone morphogenetic protein-2 and VEGF165 in the omentum majus in a rabbit model. Tissue Eng. Part C Methods 23(12), 842–849 (2017).
    • 22 Hönig JF, Merten HA. Das Göttinger Miniaturschwein (GMS) als Versuchstier in der humanmedizinischen osteologischen Grundlagenforschung. Z. Zahnärztl. Implantol. 2(1), 237–243 (1993).
    • 23 Accorsi-Mendonca T, Conz MB, Barros TC, De Sena LA, Soares Gde A, Granjeiro JM. Physicochemical characterization of two deproteinized bovine xenografts. Braz. Oral Res. 22(1), 5–10 (2008).
    • 24 Figueiredo M, Henriques J, Martins G, Guerra F, Judas F, Figueiredo H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes – comparison with human bone. J. Biomed. Mater. Res. B Appl. Biomater. 92(2), 409–419 (2010).
    • 25 Warnke PH. In vivo tissue engineering of biological joint replacements. Lancet 376(9739), 394–396 (2010).
    • 26 Lee KT, Mun GH. A systematic review of functional donor-site morbidity after latissimus dorsi muscle transfer. Plast. Reconstr. Surg. 134(2), 303–314 (2014).
    • 27 Warnke PH, Bolte H, Schunemann K et al. Endocultivation: does delayed application of BMP improve intramuscular heterotopic bone formation? J. Craniomaxillofac. Surg. 38(1), 54–59 (2010).
    • 28 Liu Y, Moller B, Wiltfang J, Warnke PH, Terheyden H. Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor. Tissue Eng. Part A 20(23–24), 3189–3197 (2014).
    • 29 Beck-Broichsitter BE, Becker ST, Seitz H, Wiltfang J, Warnke PH. Endocultivation: continuous application of rhBMP-2 via mini-osmotic pumps to induce bone formation at extraskeletal sites. Int. J. Oral Maxillofac. Surg. 46(5), 655–661 (2017).
    • 30 Losken A, Carlson GW, Culbertson JH et al. Omental free flap reconstruction in complex head and neck deformities. Head Neck 24(4), 326–331 (2002).
    • 31 Shah S, Lowery E, Braun RK et al. Cellular basis of tissue regeneration by omentum. PLoS ONE 7(6), e38368 (2012).
    • 32 Litbarg NO, Gudehithlu KP, Sethupathi P, Arruda JA, Dunea G, Singh AK. Activated omentum becomes rich in factors that promote healing and tissue regeneration. Cell Tissue Res. 328(3), 487–497 (2007).
    • 33 Singh AK, Patel J, Litbarg NO et al. Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res. 332(1), 81–88 (2008).
    • 34 Mohammadi R, Azizi S, Amini K. Effects of undifferentiated cultured omental adipose-derived stem cells on peripheral nerve regeneration. J. Surg. Res. 180(2), 91–97 (2013).
    • 35 Shelton EL, Poole SD, Reese J, Bader DM. Omental grafting: a cell-based therapy for blood vessel repair. J. Tissue Eng. Regen. Med. 7(6), 421–433 (2013).
    • 36 Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 36(3), 20–27 (2005).
    • 37 Wiltfang J, Rohnen M, Egberts JH et al. Man as a living bioreactor: prefabrication of a custom vascularized bone graft in the gastrocolic omentum. Tissue Eng. Part C Methods 22(8), 740–746 (2016).
    • 38 De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen. Biomater. 5(4), 197–211 (2018).
    • 39 Becker ST, Bolte H, Krapf O et al. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol. 45(11), 181–188 (2009).
    • 40 Warnke PH, Seitz H, Warnke F et al. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J. Biomed. Mater. Res. B Appl. Biomater. 93(1), 212–217 (2010).
    • 41 Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur. J. Oral Sci. 125(5), 315–337 (2017).
    • 42 Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl. Med. 1(6), 480–491 (2012).
    • 43 Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: boosting current knowledge. World J. Stem Cells 6(3), 266–277 (2014).
    • 44 Roberts SJ, Van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70(1), 10–18 (2015).
    • 45 Nakazato K, Toriyama K, Hishida M et al. Free calvarial periosteum graft vascularized by an omental flap in a rat model. Ann. Plast. Surg. 67(6), 649–654 (2011).
    • 46 Beck-Broichsitter BE, Christofzik DW, Daschner F et al. Endocultivation: metabolism during heterotopic osteoinduction in vivo – monitoring with fiber optic detection devices. Tissue Eng. Part C Methods 18(10), 740–746 (2012).
    • 47 Naujokat H, Acil Y, Gulses A, Birkenfeld F, Wiltfang J. Man as a living bioreactor: long-term histological aspects of a mandibular replacement engineered in the patient's own body. Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2018.1005.1006 (2018) (Epub ahead of print).