We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/pme.10.16

We are all perplexed that current medical practice often appears maladroit in curing our individual illnesses or disease. However, as is often the case, a lack of understanding, tools and technologies are the root cause of such situations. Human individuality is an often-quoted term but, in the context of human biology, it is poorly understood. This is compounded when there is a need to consider the variability of human populations. In the case of the former, it is possible to quantify human complexity as determined by the 35,000 genes of the human genome, the 1–10 million proteins (including antibodies) and the 2000–3000 metabolites of the human metabolome. Human variability is much more difficult to assess, since many of the variables, such as the definition of race, are not even clearly agreed on. In order to accommodate human complexity, variability and its influence on health and disease, it is necessary to undertake a systematic approach. In the past decade, the emergence of analytical platforms and bioinformatics tools has led to the development of systems biology. Such an approach offers enormous potential in defining key pathways and networks involved in optimal human health, as well as disease onset, progression and treatment. The tools and technologies now available in systems biology analyses offer exciting opportunities to exploit the emerging areas of personalized medicine. In this article, we discuss the current status of human complexity, and how systems biology and personalized medicine can impact at the individual and population level.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Fay LB, German JB: Personalizing foods: is genotype necessary? Curr. Opin. Biotechnol.19(2),121–128 (2008).
  • Kaput J: Nutrigenomics research for personalized nutrition and medicine. Curr. Opin. Biotechnol.19(2),110–120 (2008).
  • Naylor S, Culbertson A, Valentine S: Technology: bane or bonanza for the pharmaceutical industry? Drug Discovery World8(4),53 (2007).
  • Meadows M: Promoting safe and effective drugs for 100 years. FDA Consum.40(1),14–20 (2006).
  • Culbertson AW, Valentine SJ, Naylor S: Personalized medicine technological innovation and patient empowerment or exuberant hyperbole. Drug Discovery World8(3),18–32 (2007).▪ Provides a comprehensive overview from both an academic and business perspective on personalized medicine.
  • Fraga MF, Ballestar E, Paz MF et al.: Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA102(30),10604–10609 (2005).
  • Collins FS, Green ED, Guttmacher AE, Guyer MS: A vision for the future of genomics research. Nature422(6934),835–847 (2003).▪▪ Provides rationale for continued biomedical research beyond the Human Genome Project.
  • Naylor S: Overview of biomarkers in disease, drug discovery and development. Drug Discovery World5,9–18 (2004).
  • Kitano H: Systems biology: a brief overview. Science295(5560),1662–1664 (2002).
  • 10  Hood L, Heath JR, Phelps ME, Lin B: Systems biology and new technologies enable predictive and preventive medicine. Science306(5696),640–643 (2004).▪ Provides key framework for systems biology-driven personalized medicine research.
  • 11  Palsson B: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge, UK; NY, USA (2006).
  • 12  Wiener N: Cybernetics; or, Control and Communication in the Animal and the Machine (2nd Edition). MIT Press, NY, USA (1961).
  • 13  Bertalanffy LV, Laszlo E: The Relevance of General Systems Theory; Papers Presented to Ludwig von Bertalanffy on his Seventieth Birthday. George Braziller Inc., NY, USA (1972).
  • 14  Heinrich R, Schuster S: The Regulation of Cellular Systems. Chapman & Hall, NY, USA (1996).
  • 15  Voit EO: Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, NY, USA (2000).
  • 16  Westerhoff HV, Palsson BO: The evolution of molecular biology into systems biology. Nat. Biotechnol.22(10),1249–1252 (2004).
  • 17  Palsson B: In silico biology through “omics”. Nat. Biotechnol.20(7),649–650 (2002).
  • 18  Klauschen F, Angermann BR, Meier-Schellersheim M: Understanding diseases by mouse click: the promise and potential of computational approaches in systems biology. Clin. Exp. Immunol.149(3),424–429 (2007).
  • 19  Ideker T, Thorsson V, Ranish JA et al.: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292(5518),929–934 (2001).
  • 20  van der Greef J, Martin S, Juhasz P et al.: The art and practice of systems biology in medicine: mapping patterns of relationships. J. Proteome Res.6(4),1540–1559 (2007).
  • 21  Clish CB, Davidov E, Oresic M et al.: Integrative biological analysis of the APOE*3-leiden transgenic mouse. OMICS8(1),3–13 (2004).▪▪ First example of an experimental systems biology approach on a mammalian organism.
  • 22  Bruggeman FJ, Hornberg JJ, Boogerd FC, Westerhoff HV: Introduction to systems biology. EXS97,1–19 (2007).
  • 23  Kitano H: Towards a theory of biological robustness. Mol. Syst. Biol.3,137 (2007).
  • 24  Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK: Physicochemical modelling of cell signalling pathways. Nat. Cell Biol.8(11),1195–1203 (2006).
  • 25  Bruggeman FJ, Westerhoff HV: The nature of systems biology. Trends Microbiol.15(1),45–50 (2007).
  • 26  Davidov E, Clish CB, Oresic M et al.: Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. OMICS8(4),267–288 (2004).
  • 27  Oresic M, Clish CB, Davidov EJ et al.: Phenotype characterisation using integrated gene transcript, protein and metabolite profiling. Appl. Bioinformatics3(4),205–217 (2004).
  • 28  Chen JY, Pinkerton SL, Shen C, Wang M: An integrated computational proteomics method to extract protein targets for fanconi anemia studies. 21st Annual ACM Symposium on Applied Computing1,173–179 (2006).
  • 29  Philippi S, Kohler J: Addressing the problems with life-science databases for traditional uses and systems biology. Nat. Rev. Genet.7(6),482–488 (2006).
  • 30  Chen JY, Carlis JV: Genomic data modeling. Inf. Syst.28(4),287–310 (2003).
  • 31  Brazma A, Krestyaninova M, Sarkans U: Standards for systems biology. Nat. Rev. Genet.7(8),593–605 (2006).
  • 32  Huang S, Wikswo J: Dimensions of systems biology. Rev. Physiol. Biochem. Pharmacol.157,81–104 (2006).
  • 33  Naylor S, Cavanagh J: Status of systems biology – does it have a future? Drug Discovery Today: BIOSILICO2(5),171–174 (2004).
  • 34  Aderem A: Systems biology: its practice and challenges. Cell121(4),511–513 (2005).
  • 35  Kussmann M, Rezzi S, Daniel H: Profiling techniques in nutrition and health research. Curr. Opin. Biotechnol.19(2),83–99 (2008).▪ Thorough analysis and perspective on tools and technologies used in systems biology.
  • 36  Smith JC, Figeys D: Proteomics technology in systems biology. Mol. Biosyst2(8),364–370 (2006).
  • 37  Chan EC, Koh PK, Mal M et al.: Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res.8(1),352–361 (2009).
  • 38  Ashburner M, Ball CA, Blake JA et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet.25(1),25–29 (2000).
  • 39  Albeck JG, MacBeath G, White FM, Sorger PK, Lauffenburger DA, Gaudet S: Collecting and organizing systematic sets of protein data. Nat. Rev. Mol. Cell. Biol.7(11),803–812 (2006).
  • 40  Dhanapalan L, Chen JY: A case study of integrating protein interaction data using semantic web technology. Int. J. Bioinform. Res. Appl.3(3),286–302 (2007).
  • 41  Chowbina SR, Wu X, Zhang F et al.: HPD: an online integrated human pathway database enabling systems biology studies. BMC Bioinformatics10(Suppl. 11),S5 (2009).
  • 42  Hwang D, Rust AG, Ramsey S et al.: A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA102(48),17296–17301 (2005).
  • 43  Suderman M, Hallett M: Tools for visually exploring biological networks. Bioinformatics23(20),2651–2659 (2007).
  • 44  You Q, Fang S, Chen JY: Geneterrain: visual exploration of differential gene expression profiles organized in native biomolecular interaction networks. Inf. Vis. DOI: 10.1057/palgrave.ivs.9500169 (2010) (Epub ahead of print).
  • 45  Huan T, Sivachenko A, Harrison S, Chen JY: Proteolens: a visual analytic tool for multiscale database-driven biological network data mining. BMC Bioinformatics9,S5 (2008).
  • 46  Alberghina L, Colangelo AM: The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease neurodegeneration. BMC Neurosci.7(Suppl. 1),S2 (2006).
  • 47  Li J, Zhu X, Chen JY: Building disease-specific drug-protein connectivity maps from molecular interaction networks and pubmed abstracts. PLoS Comput. Biol.5(7),E1000450 (2009).
  • 48  Chen H, Ding L, Wu Z, Yu T, Dhanapalan L, Chen JY: Semantic web for integrated network analysis in biomedicine. Brief Bioinform.10(2),177–192 (2009).
  • 49  Chen JY, Sidhu AS: Biological Database Modeling. Artech House, MA, USA (2008).
  • 50  Chen JY, Lonardi S: Biological Data Mining. Chapman & Hall/CRC, FL, USA (2010).▪▪ Provides a compilation of current computational biology papers that address key challenges in different aspects of systems biology and personalized medicine research.
  • 51  Kriete A, Eils R: Computational Systems Biology. Elsevier, Amsterdam, The Netherlands; Boston, MA, USA (2006).
  • 52  Chen JY, Shen C, Sivachenko A: Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pacific Symposium on Biocomputing 200611,367–378 (2006).
  • 53  Chen JY, Yan Z, Shen C, Fitzpatrick DP, Wang M: A systems biology approach to the study of cisplatin drug resistance in ovarian cancers. J. Bioinform. Comput Biol.5(2A),383–405 (2007).▪▪ Provides molecular network analysis and visualization at an intermediate scale.
  • 54  Lemberger T: Systems biology in human health and disease. Mol. Syst. Biol.3,136 (2007).
  • 55  Morel NM, Holland JM, van der Greef J et al.: Primer on medical genomics. Part XIV: introduction to systems biology – a new approach to understanding disease and treatment. Mayo Clin. Proc.79(5),651–658 (2004).
  • 56  Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol. Syst. Biol.3,140 (2007).
  • 57  Ergun A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ: A network biology approach to prostate cancer. Mol. Syst. Biol.3,82 (2007).
  • 58  Drake TA, Ping P: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Proteomics approaches to the systems biology of cardiovascular diseases. J. Lipid Res.48(1),1–8 (2007).
  • 59  Assmus HE, Herwig R, Cho KH, Wolkenhauer O: Dynamics of biological systems: role of systems biology in medical research. Expert Rev. Mol. Diagn.6(6),891–902 (2006).
  • 60  Loscalzo J, Kohane I, Barabasi AL: Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol.3,124 (2007).▪ One of the first attempts to reclassify disease based on systems-level analyses.
  • 61  Forst CV: Host–pathogen systems biology. Drug Discov. Today11(5–6),220–227 (2006).▪▪ Thought-provoking perspective on systems biology and personalized medicne by a thought leader in the field.
  • 62  Slikker W Jr, Paule MG, Wright LK, Patterson TA, Wang C: Systems biology approaches for toxicology. J. Appl. Toxicol27(3),201–217 (2007).
  • 63  Zahn JM, Kim SK: Systems biology of aging in four species. Curr. Opin. Biotechnol.18(4),355–359 (2007).
  • 64  Nicholson JK: Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol.2,52 (2006).
  • 65  Naylor S, Culbertson AW, Valentine SJ: Towards a systems level analysis of health and nutrition. Curr. Opin. Biotechnol.19(2),100–109 (2008).▪ Ties together the elements of systems biology, personalized medicine and health.
  • 66  Nestler G: Traditional Chinese medicine. Med. Clin. North Am.86(1),63–73 (2002).
  • 67  Daikos GK: History of medicine: our Hippocratic heritage. Int. J. Antimicrob. Agents29(6),617–620 (2007).
  • 68  Valet GK, Tarnok A: Cytomics in predictive medicine. Cytometry B Clin. Cytom.53(1),1–3 (2003).
  • 69  Ring AR: History of the American Board of Preventive Medicine. Am. J. Prev Med.22(4),296–319 (2002).
  • 70  Izraeli S, Rechavi G: Molecular medicine – an overview. Isr. Med. Assoc. J.4(8),638–640 (2002).
  • 71  Mann RD: From mithridatium to modern medicine: the management of drug safety. J. R. Soc. Med.81(12),725–728 (1988).
  • 72  Drews J: Drug discovery: a historical perspective. Science287(5460),1960–1964 (2000).
  • 73  Prous J, Khurdayan V: The story so far in R&D. Drug News Perspect.20(1),7–15 (2007).
  • 74  de Leon J, Susce MT, Johnson M et al.: DNA microarray technology in the clinical environment: the amplichip CYP450 test for CYP2D6 and CYP2C19 genotyping. CNS Spectr.14(1),19–34 (2009).
  • 75  Rieder MJ, Reiner AP, Gage BF et al.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med.352(22),2285–2293 (2005).
  • 76  Rost S, Fregin A, Ivaskevicius V et al.: Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature427(6974),537–541 (2004).
  • 77  Paik S, Shak S, Tang G et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351(27),2817–2826 (2004).
  • 78  Jabbour E, Cortes JE, Giles FJ, O’Brien S, Kantarjian HM: Current and emerging treatment options in chronic myeloid leukemia. Cancer109(11),2171–2181 (2007).
  • 79  Yang XR, Sherman ME, Rimm DL et al.: Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol. Biomarkers Prev.16(3),439–443 (2007).
  • 80  Menard S, Pupa SM, Campiglio M, Tagliabue E: Biologic and therapeutic role of HER2 in cancer. Oncogene22(42),6570–6578 (2003).
  • 81  Habel LA, Shak S, Jacobs MK et al.: A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res.8(3),R25 (2006).
  • 101  Collins FS: Personalized medicine: a new approach to staying well. The Boston Globe 17 July (2005). www.boston.com/news/globe/editorial_opinion/oped/articles/2005/07/17/personalized_medicine
  • 102  Personalized Medicine Coalition (PMC): The Case for Personalized Medicine (2010). www.personalizedmedicinecoalition.org