We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Toward multiomics-based next-generation diagnostics for precision medicine

    Qi Wang

    Department of Emergency Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China

    ,
    Wei-Xian Peng

    Department of Emergency Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China

    ,
    Lu Wang

    Department of Emergency Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China

    &
    Li Ye

    *Author for correspondence: Tel.: +86 571 8884 9101; Fax: +86 571 8884 9114;

    E-mail Address: liye_dr@sina.com

    Department of Nursing, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China

    Published Online:https://doi.org/10.2217/pme-2018-0085

    Our healthcare system is experiencing a paradigm shift to precision medicine, aiming at an early prediction of individual disease risks and targeted interventions. Whole-genome sequencing is currently gaining momentum, as it has the potential to capture all classes of genetic variation, thus providing a more complete picture of the individual's genetic makeup, which could be utilized in genetic testing; however, this will also lead to difficulties in interpreting the test results, necessitating careful integration of genomic data with other layers of information, both molecular multiomics measurements of epigenome, transcriptome, proteome, metabolome and even microbiome, as well as comprehensive information on diet, lifestyle and environment. Overall, the translation of patient-specific data into actionable diagnostic tools will be a challenging task, requiring expertise from multiple disciplines, secure data sharing in large reference databases and a strong computational infrastructure.

    References

    • 1 Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N. Biotechnol. 29(6), 613–624 (2012).
    • 2 Lindor NM, Thibodeau SN, Burke W. Whole-genome sequencing in healthy people. Mayo Clin. Proc. 92(1), 159–172 (2017).
    • 3 March R, Schott C. Personalized/precision medicine/personalised healthcare: the art of giving different names to the same thing? Per. Med. 14(6), 463–466 (2017).
    • 4 Grainger D. The multi-omics revolution. J. Pers. Med. 81–86 (2016).
    • 5 Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 20, 1122–1130 (2018).
    • 6 Hogarth S, Javitt G, Melzer D. The current landscape for direct-to-consumer genetic testing: legal, ethical, and policy issues. Annu. Rev. Genomics Hum. Genet. 9(1), 161–182 (2008).
    • 7 Burton A. Are we ready for direct-to-consumer genetic testing? Lancet Neurol. 14(2), 138–139 (2015).
    • 8 Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype–phenotype interactions. Nat. Rev. Genet. 16(2), 85–97 (2015).
    • 9 Rotroff DM, Motsinger-Reif AA. Embracing integrative multiomics approaches. Int. J. Genomics 2016, 1715985 (2016).
    • 10 Cambiaghi A, Ferrario M, Masseroli M. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief. Bioinform. 18(3), 498–510 (2017).
    • 11 Arneson D, Shu L, Tsai B, Barrere-Cain R, Sun C, Yang X. Multidimensional integrative genomics approaches to dissecting cardiovascular disease. Front. Cardiovasc. Med. 4, 8 (2017).
    • 12 Zhang W, Li F, Nie L. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156(2), 287–301 (2010).
    • 13 Manzoni C, Kia DA, Vandrovcova J et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19(2), 286–302 (2018).
    • 14 Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med. Genomics 8(1), 33 (2015).
    • 15 Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int. J. Mol. Sci. 17(9), pii: E1555 (2016).
    • 16 Chrystoja CC, Diamandis EP. Whole genome sequencing as a diagnostic test: challenges and opportunities. Clin. Chem. 60(5), 724–733 (2014).
    • 17 Middleton A, Mendes Á, Benjamin CM, Howard HC. Direct-to-consumer genetic testing: where and how does genetic counseling fit? Per. Med. 14(3), 249–257 (2017).
    • 18 Tsai EA, Shakbatyan R, Evans J et al. Bioinformatics workflow for clinical whole genome sequencing at partners healthcare personalized medicine. J. Pers. Med. 6(1), E12 (2016).
    • 19 Jain M, Koren S, Miga KH et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36(4), 338–345 (2018).
    • 20 Seo JS, Rhie A, Kim J et al. De novo assembly and phasing of a Korean human genome. Nature 538(7624), 243–247 (2016).
    • 21 Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genomics, Proteomics Bioinforma. 14(5), 265–279 (2016).
    • 22 Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 17(3), 246–253 (2016).
    • 23 de Lannoy C, de Ridder D, Risse J. A sequencer coming of age: de novo genome assembly using MinION reads. F1000Research 6, 1083 (2017).
    • 24 Kalia SS, Adelman K, Bale SJ et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet. Med. 19(2), 249–255 (2017).
    • 25 Goldfeder RL, Ashley EA. A precision metric for clinical genome sequencing. bioRxiv 051490 (2016).
    • 26 Hoffman-Andrews L. The known unknown: the challenges of genetic variants of uncertain significance in clinical practice. J. Law Biosci. 4(3), 648–657 (2017).
    • 27 Rehm HL, Bale SJ, Bayrak-Toydemir P et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15(9), 733–747 (2013).
    • 28 Phillips AM. ‘Only a click away – DTC genetics for ancestry, health, love…and more: a view of the business and regulatory landscape’. Appl. Transl. Genomics. 8, 16–22 (2016).
    • 29 Niemiec E, Howard HC. Ethical issues in consumer genome sequencing: use of consumers’ samples and data. Appl. Transl. Genomics 8, 23–30 (2016).
    • 30 Marzuillo C, De Vito C, D'Andrea E, Rosso A, Villari P. Predictive genetic testing for complex diseases: a public health perspective. QJM 107(2), 93–97 (2014).
    • 31 Ukraintseva S, Yashin A, Arbeev K et al. Puzzling role of genetic risk factors in human longevity: ‘risk alleles’ as pro-longevity variants. Biogerontology 17(1), 109–127 (2016).
    • 32 Badeaux AI, Shi Y. Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14(4), 211–224 (2013).
    • 33 Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox. Res. 27(1), 84–97 (2015).
    • 34 Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res. 27(2), 172–197 (2014).
    • 35 Sandoval J, Peiró-Chova L, Pallardó FV, García-Giménez JL. Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev. Mol. Diagn. 13(5), 457–471 (2013).
    • 36 Bell CG, Beck S. The epigenomic interface between genome and environment in common complex diseases. Brief. Funct. Genomics 9(5–6), 477–485 (2010).
    • 37 Heyn H, Méndez-González J, Esteller M. Epigenetic profiling joins personalized cancer medicine. Expert Rev. Mol. Diagn. 13(5), 473–479 (2013).
    • 38 Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T. Next-generation technologies and data analytical approaches for epigenomics. Environ. Mol. Mutagenesis 55, 155–170 (2014).
    • 39 Barski A, Cuddapah S, Cui K et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
    • 40 Yaragatti M, Basilico C, Dailey L. Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions. Genome Res. 18(6), 930–938 (2008).
    • 41 Lister R, O'Malley RC, Tonti-Filippini J et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3), 523–536 (2008).
    • 42 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).
    • 43 Bock C, Halbritter F, Carmona FJ et al. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat. Biotechnol. 34(7), 726–737 (2016).
    • 44 Libertini E, Heath SC, Hamoudi RA et al. Information recovery from low coverage whole-genome bisulfite sequencing. Nat. Commun. 7, 11306 (2016).
    • 45 Wilson S, Fan L, Sahgal N, Qi J, Filipp FV. The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget 8(18), 30328 (2017).
    • 46 Tiffen J, Wilson S, Gallagher SJ, Hersey P, Filipp FV. Somatic copy number amplification and hyperactivating somatic mutations of EZH2 correlate With DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma. Neoplasia 18(2), 121–132 (2016).
    • 47 Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet. 17(5), 257–271 (2016).
    • 48 Xu S. Transcriptome profiling in systems vascular medicine. Front. Pharmacol. 8, 563 (2017).
    • 49 Sonawane AR, Platig J, Fagny M et al. Understanding tissue-specific gene regulation. Cell Rep. 21(4), 1077–1088 (2017).
    • 50 Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13(4), 227–232 (2012).
    • 51 Cesnik AJ, Shortreed MR, Sheynkman GM, Frey BL, Smith LM. Human proteomic variation revealed by combining RNA-seq proteogenomics and global post-translational modification (G-PTM) search strategy. J. Proteome Res. 15(3), 800–808 (2016).
    • 52 Li S, Todor A, Luo R. Blood transcriptomics and metabolomics for personalized medicine. Comput. Struct. Biotechnol. J. 14, 1–7 (2016).
    • 53 Wrighton KH. Genetic testing: the diagnostic power of RNA-seq. Nat. Rev. Genet. 18, 392–393 (2017).
    • 54 Cummings BB, Marshall JL, Tukiainen T et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9(386), pii: eaal5209 (2017).
    • 55 James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q. Rev. Biophys. 30(4), 279–331 (1997).
    • 56 Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21(3), 255–261 (2003).
    • 57 Nice EC. From proteomics to personalized medicine: the road ahead. Expert Rev. Proteomics 13(4), 341–343 (2016).
    • 58 Aebersold R. A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom. 14(7), 685–695 (2003).
    • 59 Kodadek T. Protein microarrays: prospects and problems. Chem. Biol. 8(2), 105–115 (2001).
    • 60 Duarte T, Spencer C. Personalized proteomics: the future of precision medicine. Proteome 4(4), 29 (2016).
    • 61 Jin P, Lan J, Wang K, Baker MS, Huang C, Nice EC. Pathology, proteomics and the pathway to personalised medicine. Expert Rev. Proteomics 15(3), 231–243 (2018).
    • 62 Yu X, Petritis B, Duan H, Xu D, LaBaer J. Advances in cell-free protein array methods. Expert Rev. Proteomics 15(1), 1–11 (2018).
    • 63 Velez G, Nathaniel Roybal C, Colgan D, Tsang SH, Bassuk AG, Mahajan VB. Personalized proteomics for the diagnosis and treatment of idiopathic inflammatory disease. JAMA Ophthalmol. 134(4), 444–448 (2016).
    • 64 Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv. Genet. 93, 147–190 (2016).
    • 65 Beger RD, Dunn W, Schmidt MA et al. Metabolomics enables precision medicine: ‘a white paper, community perspective’. Metabolomics 12(10), 149 (2016).
    • 66 Wandro S, Carmody L, Gallagher T, Lipuma JJ, Whiteson K. Making it last: storage time and temperature have differential impacts on metabolite profiles of airway samples from cystic fibrosis patients. mSystems 2(6), e00100-17 (2017).
    • 67 Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3, 23 (2015).
    • 68 Metabolon (2017). www.metabolon.com/.
    • 69 Yeung PK. Metabolomics and biomarkers for drug discovery. Metabolites 8(1), 11 (2018).
    • 70 Coene KLM, Kluijtmans LAJ, van der Heeft E et al. Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 41(3), 337–353 (2018).
    • 71 Puchades-Carrasco L, Pineda-Lucena A. Metabolomics applications in precision medicine: an oncological perspective. Curr. Top. Med. Chem. 17(24), 2740–2751 (2017).
    • 72 Kuntz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends Pharmacol. Sci. 38(1), 81–91 (2017).
    • 73 Petrosino JF. The microbiome in precision medicine: the way forward. Genome Med. 10(1), 12 (2018).
    • 74 Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Dig. Liver Dis. 47(12), 1007–1012 (2015).
    • 75 Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 22(5), 589–599 (2017).
    • 76 Jovel J, Patterson J, Wang W et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 459 (2016).
    • 77 Sekse C, Holst-Jensen A, Dobrindt U et al. High-throughput sequencing for detection of foodborne pathogens. Front. Microbiol. 8, 2029 (2017).
    • 78 Daniels L, Budding AE, de Korte N et al. Fecal microbiome analysis as a diagnostic test for diverticulitis. Eur. J. Clin. Microbiol. Infect. Dis. 33(11), 1927–1936 (2014).
    • 79 The Medical Futurist (2019). https://medicalfuturist.com/.
    • 80 Zhang C, Cleveland K, Schnoll-Sussman F et al. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol. 16(1), 265 (2015).
    • 81 Poussin C, Sierro N, Boué S et al. Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discov. Today 23(9), 1644–1657 (2018).
    • 82 Feldbauer R, Schulz F, Horn M, Rattei T. Prediction of microbial phenotypes based on comparative genomics. BMC Bioinformatics 16(14), S1 (2015).
    • 83 Samb-Ba B, Mazenot C, Gassama-Sow A et al. 1DUMMY MALDI-TOF identification of the human gut microbiome in people with and without diarrhea in Senegal. PLoS ONE 9(5), e87419 (2014).
    • 84 Gopalakrishnan V, Spencer CN, Nezi L et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371), 97–103 (2018).
    • 85 Matson V, Fessler J, Bao R et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371), 104–108 (2018).
    • 86 Routy B, Le Chatelier E, Derosa L et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371), 91–97 (2018).
    • 87 Teixeira AP, Dias JML, Carinhas N et al. Cell functional enviromics: unravelling the function of environmental factors. BMC Syst. Biol. 5, 92 (2011).
    • 88 Vineis P, Chadeau-Hyam M, Gmuender H et al. The exposome in practice: design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health. 220, 142–151 (2016).
    • 89 Obama White House. https://obamawhitehouse.archives.gov/precision-medicine/.
    • 90 Biden's Cancer Initiative (2018). https://bidencancer.org/.
    • 91 Institute for Systems Biology (2019). https://systemsbiology.org/research/100k-wellness-project/.
    • 92 Chen R, Mias GI, Li-Pook-Than J et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6), 1293–1307 (2012).
    • 93 Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017).
    • 94 Shen R, Mo Q, Schultz N et al. Integrative subtype discovery in glioblastoma using iCluster. PLoS ONE 7(4), e35236 (2012).
    • 95 Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics 29(20), 2610–2616 (2013).
    • 96 Bonnet E, Calzone L, Michoel T. Integrative multi-omics module network inference with lemon-tree. PLoS Comput. Biol. 11(2), e1003983 (2015).
    • 97 Louhimo R, Hautaniemi S. CNAmet: an R package for integrating copy number, methylation and expression data. Bioinformatics 27(6), 887–888 (2011).
    • 98 Kim D, Li R, Dudek SM, Ritchie MD. ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 6(1), 23 (2013).
    • 99 Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble S. A statistical framework for genomic data fusion. Bioinformatics 20(16), 2626–2635 (2004).
    • 100 Ovaska K, Laakso M, Haapa-Paananen S et al. Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med. 2(9), 65 (2010).
    • 101 O'Driscoll A, Daugelaite J, Sleator RD. ‘Big data, Hadoop and cloud computing in genomics. J. Biomed. Inform. 46(5), 774–781 (2013).
    • 102 Amazon Web Services (2019). https://aws.amazon.com/.
    • 103 Dai L, Gao X, Guo Y, Xiao J, Zhang Z. Bioinformatics clouds for big data manipulation. Biol. Direct. 7, 43 (2012).
    • 104 ELIXIR (2017). www.elixir-europe.org/.
    • 105 Galaxy (2019). usegalaxy.org/.
    • 106 Hiltemann S, Mei H, de Hollander M et al. CGtag: complete genomics toolkit and annotation in a cloud-based Galaxy. Gigascience 3(1), 1 (2014).
    • 107 Zhao K, Lu ZX, Park JW, Zhou Q, Xing Y. GLiMMPS: obust statistical model for regulatory variation of alternative splicing using RNA-seq data. Genome Biol. 14(7), R74 (2013).
    • 108 Nguyen QH, Pervolarakis N, Blake K et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat. Commun. 9(1), 2028 (2018).
    • 109 Mardis ER. The 1000 genome, the 100,000 analysis? Genome Med. 2(11), 84 (2010).