We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Renal cell carcinoma development and miRNAs: a possible link to the EGFR pathway

    Francisca Dias

    Molecular Oncology Group, Portuguese Institute of Oncology, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal

    ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal

    Authors contributed equally

    Search for more papers by this author

    ,
    Ana L Teixeira

    Molecular Oncology Group, Portuguese Institute of Oncology, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal

    ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal

    Authors contributed equally

    Search for more papers by this author

    ,
    Juliana I Santos

    Molecular Oncology Group, Portuguese Institute of Oncology, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal

    ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal

    ,
    Mónica Gomes

    Molecular Oncology Group, Portuguese Institute of Oncology, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal

    ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal

    LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal

    ,
    Augusto Nogueira

    Molecular Oncology Group, Portuguese Institute of Oncology, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal

    LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal

    ,
    Joana Assis

    Molecular Oncology Group, Portuguese Institute of Oncology, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal

    LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal

    &
    Rui Medeiros

    CEBIMED, Health Sciences of Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal.

    Published Online:https://doi.org/10.2217/pgs.13.184

    Renal cell carcinoma (RCC) is the most common solid cancer of the adult kidney and the majority of RCC cases are detected accidentally. This reality and the nonexistence of a standard screening test contribute to the fact that one third of patients are diagnosed with local invasive disease or metastatic disease. miRNAs are a family of small ncRNAs that regulate gene expression and have been identified as key regulators in many biological processes including cell development, differentiation, apoptosis and proliferation. The EGF receptor signaling pathway is usually deregulated in cancer and it is suggested to have an important role in RCC. Further studies are needed to characterize deregulation of this pathway during RCC development. In this review we highlight some potential miRNAs that could be involved in the modulation of the EGF receptor pathway and consequently in RCC development.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Ljungberg B, Campbell SC, Choi HY et al. The epidemiology of renal cell carcinoma. Eur. Urol.60(4),615–621 (2011).
    • Ljungberg B, Cowan NC, Hanbury DC et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur. Urol.58(3),398–406 (2010).
    • Bex A, Jonasch E, Kirkali Z et al. Integrating surgery with targeted therapies for renal cell carcinoma: current evidence and ongoing trials. Eur. Urol.58(6),819–828 (2010).
    • Eble JN, Sauter G, Epstein JI, Sesterhenn IA. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. IARC Press, Lyon, France (2004).
    • Szymanska K, Moore LE, Rothman N et al. TP53, EGFR, and KRAS mutations in relation to VHL inactivation and lifestyle risk factors in renal-cell carcinoma from central and eastern Europe. Cancer Lett.293(1),92–98 (2010).
    • Patard JJ, Pignot G, Escudier B et al. ICUD-EAU International Consultation on Kidney Cancer 2010: treatment of metastatic disease. Eur. Urol.60(4),684–690 (2011).
    • Staehler M, Haseke N, Schoeppler G, Stadler T, Gratzke C, Stief CG. Modern therapeutic approaches in metastatic renal cell carcinoma. EAU-EBU Update Series5(1),26–37 (2007).
    • Redova M, Svoboda M, Slaby O. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem. Biophys. Res. Commun.405(2),153–156 (2011).
    • Chou A, Toon C, Pickett J, Gill AJ. von Hippel-Lindau syndrome. Front. Horm. Res.41,30–49 (2013).
    • 10  Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin. Cancer Res.10(18 Pt 2),6290S–6295S (2004).
    • 11  Kondo K, Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene. Exp. Cell. Res.264(1),117–125 (2001).
    • 12  Pugh CW, Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol.13(1),83–89 (2003).
    • 13  Lee SJ, Lattouf JB, Xanthopoulos J, Linehan WM, Bottaro DP, Vasselli JR. von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1. Eur. Urol.54(4),845–853 (2008).
    • 14  Devita VTL, Theodore S, Rosenberg, Steven A. Devita, Hellman & Rosenberg’s Cancer: Principles & Practice of Oncology. Lippincott Williams & Wilkins, PA, USA, 4–8 (2008).
    • 15  Smaldone MC, Maranchie JK. Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urol. Oncol.27(3),238–245 (2009).
    • 16  Furniss D, Harden P, Ali N et al. Prognostic factors for renall cell carcinoma. Cancer Treat. Rev.34,407–426 (2008).
    • 17  Smith K, Gunaratnam L, Morley M. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2 driven VHL-/- renal cancer. Cancer Res.65(12),5221–5230 (2005).
    • 18  Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J.277,301–308 (2009).▪ Reviews the discovery of EGFR, its signal transduction pathway and mutations.
    • 19  Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol.2(2),127–137 (2001).
    • 20  Olcay E, Giovannetti E, Peters G. Drug delivery and drug resistance: EGFR-tyrosine kinase inhibitors in non-small cell lung cancer. Open Lung Cancer J.3,26–33 (2010).
    • 21  Liu W, Innocenti F, Wu M et al. A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Res.65(1),46–53 (2005).
    • 22  Grandis J, Sok J. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol. Ther.102,37–46 (2004).
    • 23  Zhou L, Yang H. The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS ONE6(9),e23936 (2011).▪▪ Demonstrates that pVHL limits EGFR signaling by promoting c-Cbl-independent polyubiquitylation of the activated receptor, which likely results in its degradation by the proteosome.
    • 24  Wang Y, Roche O, Yan MS et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat. Med.15(3),319–324 (2009).
    • 25  Shen J, Xia W, Khotskaya YB et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature497(7449),383–387 (2013).▪▪ First study to reveal a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification.
    • 26  Ravaud A, Wallerand H, Culine S et al. Update on the medical treatment of metastatic renal cell carcinoma. Eur. Urol.54(2),315–325 (2008).
    • 27  Rini BI, Flaherty K. Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol. Oncol.26(5),543–549 (2008).
    • 28  Ravaud A, Gross-Goupil M. Overcoming resistance to tyrosine kinase inhibitors in renal cell carcinoma. Cancer Treat. Rev.38(8),996–1003 (2012).
    • 29  Gambari R, Fabbri E, Borgatti M et al. Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem. Pharmacol.82(10),1416–1429 (2011).
    • 30  Zhang J, Zhao H, Gao Y, Zhang W. Secretory miRNAs as novel cancer biomarkers. Biochim. Biophys. Acta1826(1),32–43 (2012).
    • 31  Jansson MD, Lund AH. MicroRNA and cancer. Mol. Oncol.6(6),590–610 (2012).
    • 32  Suzuki H, Maruyama R, Yamamoto E, Kai M. DNA methylation and microRNA dysregulation in cancer. Mol. Oncol.6(6),567–578 (2012).
    • 33  Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov. Today18(5–6),282–289 (2013).
    • 34  Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub.150(2),205–215 (2006).
    • 35  Catto JW, Alcaraz A, Bjartell AS et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol.59(5),671–681 (2011).
    • 36  Chow TF, Youssef YM, Lianidou E et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin. Biochem.43(1–2),150–158 (2010).
    • 37  Marques I, Teixeira AL, Ferreira M et al. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population. Mol. Biol. Rep.40(8),4819–4826 (2013).
    • 38  Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol.42(8),1273–1281 (2010).
    • 39  Duns G, van den Berg A, van Dijk MC et al. The entire miR-200 seed family is strongly deregulated in clear cell renal cell cancer compared with the proximal tubular epithelial cells of the kidney. Genes Chromosomes Cancer52(2),165–173 (2012).
    • 40  Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature499(7456),43–49 (2013).▪ Recent publication giving a good overview and understanding of the molecular alterations of clear cell renal cell carcinoma.
    • 41  Zhang H, Guo Y, Shang C, Song Y, Wu B. miR-21 downregulated TCF21 to inhibit KISS1 in renal cancer. Urology80(6),1298–1302 (2012).
    • 42  Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer6,60 (2007).
    • 43  Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature467(7311),86–90 (2010).
    • 44  Fu X, Han Y, Wu Y et al. Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur. J. Clin. Invest.41(11),1245–1253 (2011).
    • 45  Pan X, Wang ZX, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol. Ther.10(12),1224–1232 (2010).
    • 46  Liu LZ, Li C, Chen Q et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE6(4),e19139 (2011).
    • 47  Zhou X, Ren Y, Moore L et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab. Invest.90(2),144–155 (2010).
    • 48  Bruning U, Cerone L, Neufeld Z et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol. Cell. Biol.31(19),4087–4096 (2011).
    • 49  Shinmei S, Sakamoto N, Goto K et al. MicroRNA-155 is a predictive marker for survival in patients with clear cell renal cell carcinoma. Int. J. Urol.20(5),468–477 (2013).
    • 50  Juan D, Alexe G, Antes T et al. Identification of a microRNA panel for clear-cell kidney cancer. Urology75(4),835–841 (2010).
    • 51  Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J. Cancer2,515–526 (2011).
    • 52  Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle9(6),1072–1083 (2010).
    • 53  Zhao A, Li G, Peoc’h M, Genin C, Gigante M. Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp. Mol. Pathol.94(1),115–120 (2013).
    • 54  Zhang C, Zhang J, Hao J et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J. Transl. Med.10(1),119 (2012).
    • 55  Garofalo M, Di Leva G, Romano G et al. miR-221 and 222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell16(6),498–509 (2009).
    • 56  Shah M, Calin G. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med.3(8),56 (2011).
    • 57  Teixeira AL, Gomes M, Medeiros R. EGFR signaling pathway and related-miRNAs in age-related diseases: the example of miR-221 and miR-222. Front. Genet.3(286),7 (2012).
    • 58  Wulfken LM, Moritz R, Ohlmann C et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS ONE6(9),e25787 (2011).
    • 59  Ravi R, Mookerjee B, Bhujwalla ZM et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev.14(1),34–44 (2000).
    • 60  Lou JJ, Chua YL, Chew EH, Gao J, Bushell M, Hagen T. Inhibition of hypoxia-inducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS ONE5(5),e10522 (2010).
    • 61  Redova M, Poprach A, Nekvindova J et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Transl. Med.10,55 (2012).
    • 62  Teixeira AL, Silva J, Ferreira M et al. Circulating microRNA-222 in plasma – a potencial biomarker for renal cell carcinoma. Eur. J. Cancer48(Suppl. 5),S216 (2012).
    • 63  Wettersten HI, Weiss RH. Potential biofluid markers and treatment targets for renal cell carcinoma. Nat. Rev. Urol.10(6),336–344 (2013).
    • 64  Jung M, Mollenkopf HJ, Grimm C et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med.13(9B),3918–3928 (2009).▪ Demonstrates that malignant and nonmalignant tissue can clearly be differentiated by their miRNA profile.
    • 65  Koturbash I, Zemp FJ, Pogribny I, Kovalchuk O. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat. Res.722(2),94–105 (2011).
    • 66  Youssef YM, White NM, Grigull J et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur. Urol.59(5),721–730 (2011).▪ Demonstrates that miRNA expression patterns can distinguish between renal cell carcinoma subtypes.
    • 67  Ma L. Role of miR-10b in breast cancer metastasis. Breast Cancer Res.12(5),26 (2010).
    • 68  Park JK, Kogure T, Nuovo GJ et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res.71(24),7608–7616 (2011).
    • 69  Kota J, Chivukula RR, O’Donnell KA et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137(6),1005–1017 (2009).
    • 101  GeneCards®. www.genecards.org (Accessed 1 March 2013)