We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenomics of opioids and perioperative pain management

    Senthilkumar Sadhasivam

    * Author for correspondence

    Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 2001, Cincinnati, OH 45229, USA.

    &
    Vidya Chidambaran

    Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 2001, Cincinnati, OH 45229, USA

    Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

    University of Cincinnati College of Medicine, Cincinnati, OH, USA

    Published Online:https://doi.org/10.2217/pgs.12.152

    Inadequate pain relief and adverse effects from analgesics remain common in children and adults during the perioperative period. Opioids are the most commonly used analgesics in children and adults to treat perioperative pain. Narrow therapeutic index and a large interpatient variability in response to opioids are clinically significant, with inadequate pain relief at one end of the spectrum and serious side effects, such as respiratory depression and excessive sedation due to relative overdosing, at the other end. Personalizing analgesia during the perioperative period attempts to maximize pain relief while minimizing adverse events from therapy. While various factors influence response to treatment among surgical patients, age, sex, race and pharmacogenetic differences appear to play major roles in predicting outcome. Genetic factors include a subset of genes that modulate the proteins involved in pain perception, pain pathway, analgesic metabolism (pharmacokinetics), transport and receptor signaling (pharmacodynamics). While results from adult genetic studies can provide direction for pediatric studies, they have limited direct applicability, as children’s genetic predispositions to analgesic response may be influenced by developmental and behavioral components, altered sensitivity to analgesics and variation in gene-expression patterns. We have reviewed the available evidence on improving and personalizing pain management with opioids and the significance of individualizing analgesia, in order to maximize analgesic effect with minimal adverse effects with opioids. While the early evidence on individual genotype associations with pain, analgesia and opioid adverse outcome are promising, the large amount of conflicting data in the literature suggests that there is a need for larger and more robust studies with appropriate population stratification and consideration of nongenetic and other genetic risk factors. Although the clinical evidence and the prospect of being able to provide point-of-care genotyping to enable clinicians to deliver personalized analgesia for individual patients is still not available, positioning our research to identify all possible major genetic and nongenetic risk factors of an individual patient, advancing less expensive point-of-care genotyping technology and developing easy-to-use personalized clinical decision algorithms will help us to improve current clinical and economic outcomes associated with pain and opioid pain management.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Perquin CW, Hazebroek-Kampschreur AA, Hunfeld JA et al. Pain in children and adolescents: a common experience. Pain87(1),51–58 (2000).
    • Hall MJ, Defrances CJ, Williams SN, Golosinskiy A, Schwartzman A. National Hospital Discharge Survey: 2007 summary. Natl Health Stat. Report29,1–20, 24 (2007).
    • Kain ZN, Mayes LC, Caldwell-Andrews AA, Karas DE, McClain BC. Preoperative anxiety, postoperative pain, and behavioral recovery in young children undergoing surgery. Pediatrics118(2),651–658 (2006).
    • Duedahl TH, Hansen EH. A qualitative systematic review of morphine treatment in children with postoperative pain. Paediatr. Anaesth.17(8),756–774 (2007).
    • Beaulieu P, Cyrenne L, Mathews S, Villeneuve E, Vischoff D. Patient-controlled analgesia after spinal fusion for idiopathic scoliosis. Int. Orthop.20(5),295–299 (1996).
    • Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the Pharmacological Basis of Therapeutics (11th Edition). Brunton LL, Lazo JS, Parker KL (Eds). McGraw-Hill, NY, USA (2006).
    • Anderson BJ, Palmer GM. Recent pharmacological advances in paediatric analgesics. Biomed. Pharmacother.60(7),303–309 (2006).
    • Knaggs RD, Crighton IM, Cobby TF, Fletcher AJ, Hobbs GJ. The pupillary effects of intravenous morphine, codeine, and tramadol in volunteers. Anesth. Analg.99(1),108–112 (2004).
    • Shapiro A, Zohar E, Zaslansky R, Hoppenstein D, Shabat S, Fredman B. The frequency and timing of respiratory depression in 1524 postoperative patients treated with systemic or neuraxial morphine. J. Clin. Anesth.17(7),537–542 (2005).
    • 10  Gill AM, Cousins A, Nunn AJ, Choonara IA. Opiate-induced respiratory depression in pediatric patients. Ann. Pharmacother.30(2),125–129 (1996).
    • 11  Sachdeva DK, Stadnyk JM. Are one or two dangerous? Opioid exposure in toddlers. J. Emerg. Med.29(1),77–84 (2005).
    • 12  Monitto CL, Greenberg RS, Kost-Byerly S et al. The safety and efficacy of parent-/nurse-controlled analgesia in patients less than six years of age. Anesth. Analg.91(3),573–579 (2000).
    • 13  Habre W, McLeod B. Analgesic and respiratory effect of nalbuphine and pethidine for adenotonsillectomy in children with obstructive sleep disorder. Anaesthesia52(11),1101–1106 (1997).
    • 14  Aubrun F, Langeron O, Quesnel C, Coriat P, Riou B. Relationships between measurement of pain using visual analog score and morphine requirements during postoperative intravenous morphine titration. Anesthesiology98(6),1415–1421 (2003).
    • 15  Mazoit JX, Butscher K, Samii K. Morphine in postoperative patients: pharmacokinetics and pharmacodynamics of metabolites. Anesth. Analg.105(1),70–78 (2007).
    • 16  Pattinson KT. Opioids and the control of respiration. Br. J. Anaesth.100(6),747–758 (2008).
    • 17  Oderda GM, Said Q, Evans RS et al. Opioid-related adverse drug events in surgical hospitalizations: impact on costs and length of stay. Ann. Pharmacother.41(3),400–406 (2007).
    • 18  Galley HF, Mahdy A, Lowes DA. Pharmacogenetics and anesthesiologists. Pharmacogenomics6(8),849–856 (2005).
    • 19  Brennan F, Carr DB, Cousins M. Pain management: a fundamental human right. Anesth. Analg.105(1),205–221 (2007).
    • 20  Joshi GP, Ogunnaike BO. Consequences of inadequate postoperative pain relief and chronic persistent postoperative pain. Anesth. Clin. North Am.23(1),21–36 (2005).
    • 21  Kim H, Clark D, Dionne RA. Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research. J. Pain10(7),663–693 (2009).
    • 22  Palmer SN, Giesecke NM, Body SC, Shernan SK, Fox AA, Collard CD. Pharmacogenetics of anesthetic and analgesic agents. Anesthesiology102(3),663–671 (2005).
    • 23  Ziegeler S, Tsusaki BE, Collard CD. Influence of genotype on perioperative risk and outcome. Anesthesiology99(1),212–219 (2003).
    • 24  Finishing the euchromatic sequence of the human genome. Nature431(7011),931–945 (2004).
    • 25  Kim DH, Dai F, Belfer I et al. Polymorphic variation of the guanosine triphosphate cyclohydrolase 1 gene predicts outcome in patients undergoing surgical treatment for lumbar degenerative disc disease. Spine (Phila. Pa 1976)35(21),1909–1914 (2010).
    • 26  Bringuier S, Dadure C, Raux O, Dubois A, Picot MC, Capdevila X. The perioperative validity of the visual analog anxiety scale in children: a discriminant and useful instrument in routine clinical practice to optimize postoperative pain management. Anesth. Analg.109(3),737–744 (2009).
    • 27  Wang DG, Fan JB, Siao CJ et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science280(5366),1077–1082 (1998).
    • 28  Atkins JH, Johansson JS. Technologies to shape the future: proteomics applications in anesthesiology and critical care medicine. Anesth. Analg.102(4),1207–1216 (2006).
    • 29  Holliday R. Mechanisms for the control of gene activity during development. Biol. Rev. Camb. Philos. Soc.65(4),431–471 (1990).
    • 30  Ross JR, Rutter D, Welsh K et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J.5(5),324–336 (2005).
    • 31  Coderre TJ, Basbaum AI, Dallman MF, Helms C, Levine JD. Epinephrine exacerbates arthritis by an action at presynaptic B2-adrenoceptors. Neuroscience34(2),521–523 (1990).
    • 32  Levine JD, Dardick SJ, Roizen MF, Helms C, Basbaum AI. Contribution of sensory afferents and sympathetic efferents to joint injury in experimental arthritis. J. Neurosci.6(12),3423–3429 (1986).
    • 33  Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both β2- and β3-adrenergic receptors. Pain128(3),199–208 (2007).
    • 34  Rakvag TT, Klepstad P, Baar C et al. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain116(1–2),73–78 (2005).
    • 35  Wood PB. Mesolimbic dopaminergic mechanisms and pain control. Pain120(3),230–234 (2006).
    • 36  Delaney AJ, Crane JW, Sah P. Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron56(5),880–892 (2007).
    • 37  Mcewen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev.87(3),873–904 (2007).
    • 38  Khasar SG, Burkham J, Dina OA et al. Stress induces a switch of intracellular signaling in sensory neurons in a model of generalized pain. J. Neurosci.28(22),5721–5730 (2008).
    • 39  Lotta T, Vidgren J, Tilgmann C et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry34(13),4202–4210 (1995).
    • 40  Zubieta JK, Heitzeg MM, Smith YR et al.COMT Val158Met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science299(5610),1240–1243 (2003).
    • 41  Rakvag TT, Ross JR, Sato H, Skorpen F, Kaasa S, Klepstad P. Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol. Pain4,64 (2008).
    • 42  Diatchenko L, Slade GD, Nackley AG et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet.14(1),135–143 (2005).
    • 43  Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics6(3),243–250 (1996).
    • 44  Kim H, Neubert JK, San Miguel A et al. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain109(3),488–496 (2004).
    • 45  Reyes-Gibby CC, Shete S, Rakvag T et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain130(1–2),25–30 (2007).
    • 46  Nackley AG, Shabalina SA, Tchivileva IE et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science314(5807),1930–1933 (2006).
    • 47  Diatchenko L, Anderson AD, Slade GD et al. Three major haplotypes of the beta2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.141B(5),449–462 (2006).
    • 48  Mongini F, Rota E, Evangelista A et al. Personality profiles and subjective perception of pain in head pain patients. Pain144(1–2),125–129 (2009).
    • 49  Sadhasivam S, Chidambaran V, Ngamprasertwong P et al. Race and unequal burden of perioperative pain and opioid related adverse effects in children. Pediatrics129(5),832–838 (2012).▪▪ Prospective perioperative pain and opioid analgesia study in children that highlights the importance of population stratification before associating genotypes with clinical outcomes.
    • 50  Lee PJ, Delaney P, Keogh J, Sleeman D, Shorten GD. Catecholamine-O-methyltransferase polymorphisms are associated with postoperative pain intensity. Clin. J. Pain27(2),93–101 (2011).
    • 51  George SZ, Wallace MR, Wright TW et al. Evidence for a biopsychosocial influence on shoulder pain: pain catastrophizing and catechol-O-methyltransferase (COMT) diplotype predict clinical pain ratings. Pain136(1–2),53–61 (2008).
    • 52  Dai F, Belfer I, Schwartz CE et al. Association of catechol-O-methyltransferase genetic variants with outcome in patients undergoing surgical treatment for lumbar degenerative disc disease. Spine J.10(11),949–957 (2010).
    • 53  Henker RA, Lewis A, Dai F et al. The associations between OPRM1 and COMT genotypes and postoperative pain, opioid use, and opioid-induced sedation. Biol. Res. Nurs. doi:10.1177/1099800411436171 (2012) (Epub ahead of print).
    • 54  Hickey OT, Nugent NF, Burke SM, Hafeez P, Mudrakouski AL, Shorten GD. Persistent pain after mastectomy with reconstruction. J. Clin. Anesth.23(6),482–488 (2011).
    • 55  Latremoliere A, Costigan M. GCH1, BH4 and pain. Curr. Pharm. Biotechnol.12(10),1728–1741 (2011).
    • 56  Costigan M, Latremoliere A, Woolf CJ. Analgesia by inhibiting tetrahydrobiopterin synthesis. Curr. Opin. Pharmacol.12(1),92–99 (2012).
    • 57  Stuber F, Petersen M, Bokelmann F, Schade U. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-α concentrations and outcome of patients with severe sepsis. Crit. Care Med.24(3),381–384 (1996).
    • 58  Rosczyk HA, Sparkman NL, Johnson RW. Neuroinflammation and cognitive function in aged mice following minor surgery. Exp. Gerontol.43(9),840–846 (2008).
    • 59  Giannoudis PV, Dinopoulos H, Chalidis B, Hall GM. Surgical stress response. Injury37(Suppl. 5),S3–S9 (2006).
    • 60  Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann. Thorac. Surg.75(2),S715–S720 (2003).
    • 61  Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery127(2),117–126 (2000).
    • 62  Wolf G, Livshits D, Beilin B, Yirmiya R, Shavit Y. Interleukin-1 signaling is required for induction and maintenance of postoperative incisional pain: genetic and pharmacological studies in mice. Brain Behav. Immun.22(7),1072–1077 (2008).
    • 63  Brull DJ, Montgomery HE, Sanders J et al. Interleukin-6 gene -174G>C and -572G>C promoter polymorphisms are strong predictors of plasma interleukin-6 levels after coronary artery bypass surgery. Arterioscl. Thromb. Vasc. Biol.21(9),1458–1463 (2001).
    • 64  Roth-Isigkeit A, Hasselbach L, Ocklitz E et al. Inter-individual differences in cytokine release in patients undergoing cardiac surgery with cardiopulmonary bypass. Clin. Exp. Immunol.125(1),80–88 (2001).
    • 65  Mira JP, Cariou A, Grall F et al. Association of TNF2, a TNF-α promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA282(6),561–568 (1999).
    • 66  Hutchinson MR, Coats BD, Lewis SS et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun.22(8),1178–1189 (2008).
    • 67  Johnston IN, Milligan ED, Wieseler-Frank J et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci.24(33),7353–7365 (2004).
    • 68  Candiotti KA, Yang Z, Morris R et al. Polymorphism in the interleukin-1 receptor antagonist gene is associated with serum interleukin-1 receptor antagonist concentrations and postoperative opioid consumption. Anesthesiology114(5),1162–1168 (2011).
    • 69  Gelb K, Gelb AW. Sex and gender in the perioperative period: wake up to reality. Anesth. Analg.107(1),1–3 (2008).
    • 70  Chin ML, Rosenquist R. Sex, gender, and pain: “men are from Mars, women are from venus ..”. Anesth. Analg.107(1),4–5 (2008).
    • 71  Hurley RW, Adams MC. Sex, gender, and pain: an overview of a complex field. Anesth. Analg.107(1),309–317 (2008).
    • 72  Hashmi JA, Davis KD. Women experience greater heat pain adaptation and habituation than men. Pain145(3),350–357 (2009).
    • 73  Dahan A, Kest B, Waxman AR, Sarton E. Sex-specific responses to opiates: animal and human studies. Anesth. Analg.107(1),83–95 (2008).
    • 74  Mogil JS, Wilson SG, Chesler EJ et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc. Natl Acad. Sci. USA100(8),4867–4872 (2003).
    • 75  Sarton E, Olofsen E, Romberg R et al. Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology93(5),1245–1254; discussion 1246A (2000).
    • 76  Keogh E, Herdenfeldt M. Gender, coping and the perception of pain. Pain97(3),195–201 (2002).
    • 77  Edwards RR, Doleys DM, Fillingim RB, Lowery D. Ethnic differences in pain tolerance: clinical implications in a chronic pain population. Psychosom. Med.63(2),316–323 (2001).
    • 78  Edwards RR, Moric M, Husfeldt B, Buvanendran A, Ivankovich O. Ethnic similarities and differences in the chronic pain experience: a comparison of African American, Hispanic, and white patients. Pain Med.6(1),88–98 (2005).
    • 79  Rahim-Williams FB, Riley JL, Herrera D, Campbell CM, Hastie BA, Fillingim RB. Ethnic identity predicts experimental pain sensitivity in African Americans and Hispanics. Pain129(1–2),177–184 (2007).
    • 80  Ng B, Dimsdale JE, Rollnik JD, Shapiro H. The effect of ethnicity on prescriptions for patient-controlled analgesia for post-operative pain. Pain66(1),9–12 (1996).
    • 81  Crowley JJ, Oslin DW, Patkar AA et al. A genetic association study of the mu opioid receptor and severe opioid dependence. Psychiatr. Genet.13(3),169–173 (2003).
    • 82  Ikeda K, Ide S, Han W, Hayashida M, Uhl GR, Sora I. How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol. Sci.26(6),311–317 (2005).
    • 83  Bond C, Laforge KS, Tian M et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc. Natl Acad. Sci. USA95(16),9608–9613 (1998).
    • 84  Bergen AW, Kokoszka J, Peterson R et al. Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol. Psychiatry2(6),490–494 (1997).
    • 85  Gelernter J, Kranzler H, Cubells J. Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol. Psychiatry4(5),476–483 (1999).
    • 86  Johansen A, Romundstad L, Nielsen CS, Schirmer H, Stubhaug A. Persistent postsurgical pain in a general population: Prevalence and predictors in the Tromsø study. Pain153(7),1390–1396 (2012).
    • 87  Peters ML, Sommer M, Van Kleef M, Marcus MA. Predictors of physical and emotional recovery 6 and 12 months after surgery. Br. J. Surg.97(10),1518–1527 (2010).
    • 88  Khan RS, Ahmed K, Blakeway E et al. Catastrophizing: a predictive factor for postoperative pain. Am. J. Surg.201(1),122–131 (2011).
    • 89  Kain ZN, Caldwell-Andrews AA, Krivutza DM, Weinberg ME, Wang SM, Gaal D. Trends in the practice of parental presence during induction of anesthesia and the use of preoperative sedative premedication in the United States, 1995–2002: results of a follow-up national survey. Anesth. Analg.98(5),1252–1259, table of contents (2004).
    • 90  Finan PH, Zautra AJ, Davis MC, Lemery-Chalfant K, Covault J, Tennen H. COMT moderates the relation of daily maladaptive coping and pain in fibromyalgia. Pain152(2),300–307 (2011).
    • 91  Caldas JC, Pais-Ribeiro JL, Carneiro SR. General anesthesia, surgery and hospitalization in children and their effects upon cognitive, academic, emotional and sociobehavioral development – a review. Paediatr. Anaesth.14(11),910–915 (2004).
    • 92  Mcgraw T. Preparing children for the operating room: psychological issues. Can. J. Anaesth.41(11),1094–1103 (1994).
    • 93  Wildgaard K, Ringsted TK, Aasvang EK, Ravn J, Werner MU, Kehlet H. Neurophysiological characterization of persistent postthoracotomy pain. Clin. J. Pain28(2),136–142 (2012).
    • 94  Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet367(9522),1618–1625 (2006).
    • 95  Uhl GR, Sora I, Wang Z. The mu opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses. Proc. Natl Acad. Sci. USA96(14),7752–7755 (1999).
    • 96  Lotsch J, Geisslinger G. Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol. Med.11(2),82–89 (2005).
    • 97  Lotsch J, Skarke C, Grosch S, Darimont J, Schmidt H, Geisslinger G. The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics12(1),3–9 (2002).
    • 98  Oertel BG, Schmidt R, Schneider A, Geisslinger G, Lotsch J. The mu-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet. Genomics16(9),625–636 (2006).
    • 99  Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin. Pharmacol. Ther.81(3),429–444 (2007).
    • 100  Angst MS, Lazzeroni LC, Phillips NG et al. Aversive and reinforcing opioid effects: a pharmacogenomic twin study. Anesthesiology117(1),22–37 (2012).▪▪ Opioid pharmacogenetic twins study that demonstrated significant genetic effects for opioid-related respiratory depression, dislining and nausea.
    • 101  Chou WY, Yang LC, Lu HF et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol. Scand.50(7),787–792 (2006).
    • 102  Wang D, Quillan JM, Winans K, Lucas JL, Sadee W. Single nucleotide polymorphisms in the human mu opioid receptor gene alter basal G protein coupling and calmodulin binding. J. Biol. Chem.276(37),34624–34630 (2001).
    • 103  Romberg RR, Olofsen E, Bijl H et al. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology102(3),522–530 (2005).
    • 104  Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology105(2),334–337 (2006).
    • 105  Janicki PK, Schuler G, Francis D et al. A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain. Anesth. Analg.103(4),1011–1017 (2006).
    • 106  Coulbault L, Beaussier M, Verstuyft C et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin. Pharmacol. Ther.79(4),316–324 (2006).
    • 107  Walter C, Lotsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain146(3),270–275 (2009).
    • 108  Ginosar Y, Davidson EM, Meroz Y, Blotnick S, Shacham M, Caraco Y. Mu-opioid receptor (A118G) single-nucleotide polymorphism affects alfentanil requirements for extracorporeal shock wave lithotripsy: a pharmacokinetic-pharmacodynamic study. Br. J. Anaesth.103(3),420–427 (2009).
    • 109  Ochroch EA, Vachani A, Gottschalk A, Kanetsky PA. Natural variation in the mu-opioid gene OPRM1 predicts increased pain on third day after thoracotomy. Clin. J. Pain28(9),747–754 (2011).
    • 110  Mogil JS, Ritchie J, Smith SB et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J. Med. Genet.42(7),583–587 (2005).
    • 111  Manzke T, Guenther U, Ponimaskin EG et al. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science301(5630),226–229 (2003).
    • 112  Nishizawa D, Nagashima M, Katoh R et al. Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS One4(9),E7060 (2009).
    • 113  Smith HS. Opioid metabolism. Mayo Clin. Proc.84(7),613–624 (2009).
    • 114  Dayer P, Desmeules J, Leemann T, Striberni R. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem. Biophys. Res. Commun.152(1),411–416 (1988).
    • 115  Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J. Pharmacol. Exp. Ther.278(3),1165–1174 (1996).
    • 116  Lalovic B, Phillips B, Risler LL, Howald W, Shen DD. Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab. Dispos.32(4),447–454 (2004).
    • 117  McEwan A, Sigston PE, Andrews KA et al. A comparison of rectal and intramuscular codeine phosphate in children following neurosurgery. Paediatr. Anaesth.10(2),189–193 (2000).
    • 118  Williams DG, Patel A, Howard RF. Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br. J. Anaesth.89(6),839–845 (2002).
    • 119  Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn. Schmiedebergs. Arch. Pharmacol.369(1),23–37 (2004).
    • 120  Gaedigk A, Ryder DL, Bradford LD, Leeder JS. CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin. Chem.49(6 Pt 1),1008–1011 (2003).
    • 121  Raimundo S, Fischer J, Eichelbaum M, Griese EU, Schwab M, Zanger UM. Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics10(7),577–581 (2000).
    • 122  Heller T, Kirchheiner J, Armstrong VW et al. AmpliChip CYP450 GeneChip: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther. Drug. Monit.28(5),673–677 (2006).
    • 123  Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics3(2),229–243 (2002).
    • 124  Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur. J. Clin. Pharmacol.51(3–4),289–295 (1996).
    • 125  Lotsch J, Skarke C, Schmidt H et al. Evidence for morphine-independent central nervous opioid effects after administration of codeine: contribution of other codeine metabolites. Clin. Pharmacol. Ther.79(1),35–48 (2006).
    • 126  Gaedigk A, Ndjountche L, Divakaran K et al. Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin. Pharmacol. Ther.81(2),242–251 (2007).
    • 127  Lundqvist E, Johansson I, Ingelman-Sundberg M. Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene226(2),327–338 (1999).
    • 128  Bernard S, Neville KA, Nguyen AT, Flockhart DA. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist11(2),126–135 (2006).
    • 129  Shipton EA, Muller FO, Herhold WJ, De Vaal JB. Ingestion of codeine and salicylic acid causing convulsions and coma. A case report. S. Afr. Med. J.66(12),460 (1984).
    • 130  Kintz P, Tracqui A, Mangin P. Codeine concentrations in human samples in a case of fatal ingestion. Int. J. Legal Med.104(3),177–178 (1991).
    • 131  Magnani B, Evans R. Codeine intoxication in the neonate. Pediatrics104(6),e75 (1999).
    • 132  Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr. Anaesth.17(7),684–687 (2007).
    • 133  Voronov P. Codeine induced respiratory depression in a child: Author’s reply. Paediatr. Anaesth.18(3),273–274 (2008).
    • 134  Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N. Engl. J. Med.361(8),827–828 (2009).
    • 135  Hermanns-Clausen M, Weinmann W, Auwarter V et al. Drug dosing error with drops: severe clinical course of codeine intoxication in twins. Eur. J. Pediatr.168(7),819–824 (2009).
    • 136  Kelly L, Rieder M, van den Anker J et al. More codeine fatalities after tonsillectomy in north American children. Pediatrics129(5),e1343–e1347 (2012).
    • 137  Sadhasivam S, Myer CM 3rd. Preventing opioid-related deaths in children undergoing surgery. Pain Med.13(7),982–983 (2012).▪ Highlights importance of genetic variations contributing to opioid-related deaths and the need to change current clinical practice.
    • 138  Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet368(9536),704 (2006).
    • 139  Gan SH, Ismail R, Wan Adnan WA, Zulmi W. Impact of CYP2D6 genetic polymorphism on tramadol pharmacokinetics and pharmacodynamics. Mol. Diag. Ther.11(3),171–181 (2007).
    • 140  Otton SV, Schadel M, Cheung SW, Kaplan HL, Busto UE, Sellers EM. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin. Pharmacol. Ther.54(5),463–472 (1993).
    • 141  Smith HS. The metabolism of opioid agents and the clinical impact of their active metabolites. Clin. J. Pain27(9),824–838 (2011).▪ Good review of metabolism of opioids and the clinical impact of genetic variability on metabolites.
    • 142  Zwisler ST, Enggaard TP, Noehr-Jensen L et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin. Pharmacol. Toxicol.104(4),335–344 (2009).
    • 143  Gillen C, Haurand M, Kobelt DJ, Wnendt S. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedeberg’s Arch. Pharmacol.362(2),116–121 (2000).
    • 144  Stamer UM, Lehnen K, Hothker F et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain105(1–2),231–238 (2003).
    • 145  Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH. Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol. Scand.54(2),232–240 (2010).
    • 146  Crews KR, Gaedigk A, Dunnenberger HM et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin. Pharmacol. Ther.91(2),321–326 (2012).▪▪ Recent Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines outline when to use and avoid codeine based on CYP2D6 genotype.
    • 147  Holthe M, Rakvag TN, Klepstad P et al. Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J.3(1),17–26 (2003).
    • 148  Sawyer MB, Innocenti F, Das S et al. A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin. Pharmacol. Ther.73(6),566–574 (2003).
    • 149  Fujita KI, Ando Y, Yamamoto W et al. Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer. Cancer Chemother. Pharmacol.65(2),251–258 (2010).
    • 150  Saito K, Moriya H, Sawaguchi T et al. Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin. Biochem.39(3),303–308 (2006).
    • 151  Sadhasivam S, Krekels EHJ, Chidambaran V et al. Morphine clearance in children: does race or genetics matter? J. Opioid Manag.8(4),217–226 (2012).
    • 152  Chakravarti A. Being human: kinship: race relations. Nature457(7228),380–381 (2009).
    • 153  Rahemtulla T, Bhopal R. Pharmacogenetics and ethnically targeted therapies. BMJ330(7499),1036–1037 (2005).
    • 154  Bhopal R. Glossary of terms relating to ethnicity and race: for reflection and debate. J. Epidemiol. Community Health58(6),441–445 (2004).
    • 155  Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J.6(1),16–21 (2006).
    • 156  Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther.112(2),457–473 (2006).
    • 157  Tournier N, Decleves X, Saubamea B, Scherrmann JM, Cisternino S. Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology. Curr. Pharm. Des.17(26),2829–2842 (2011).
    • 158  Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci.25(8),423–429 (2004).
    • 159  Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta455(1),152–162 (1976).
    • 160  Juranka PF, Zastawny RL, Ling V. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J.3(14),2583–2592 (1989).
    • 161  Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin. Pharmacol. Ther.80(6),682–690 (2006).
    • 162  Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genomics15(10),693–704 (2005).
    • 163  Ameyaw MM, Regateiro F, Li T et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics11(3),217–221 (2001).
    • 164  Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin. Pharmacol. Ther.83(4),559–566 (2008).
    • 165  Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH. Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin. Pharmacol. Ther.81(4),539–546 (2007).
    • 166  Kim RB, Leake BF, Choo EF et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther.70(2),189–199 (2001).
    • 167  Kimchi-Sarfaty C, Marple AH, Shinar S et al. Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics8(1),29–39 (2007).
    • 168  Kolesnikov Y, Gabovits B, Levin A, Voiko E, Veske A. Combined catechol-O-methyltransferase and mu-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth. Analg.112(2),448–453 (2011).▪ This morphine pharmacogenetic study demonstrated the importance of the gene–gene approach.
    • 169  Zwisler ST, Enggaard TP, Noehr-Jensen L et al. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam. Clin. Pharmacol.24(4),517–524 (2010).
    • 170  Zwisler ST, Enggaard TP, Mikkelsen S et al. Lack of association of OPRM1 and ABCB1 single-nucleotide polymorphisms to oxycodone response in postoperative pain. J. Clin. Pharmacol.52,234–242 (2012).
    • 171  Ratain MJ. Personalized medicine: building the GPS to take us there. Clin. Pharmacol. Ther.81(3),321–322 (2007).
    • 172  Lötsch J, Geisslinger G. Current evidence for a genetic modulation of the response to analgesics. Pain121(1–2),1–5 (2006).
    • 173  Argoff CE. Clinical implications of opioid pharmacogenetics. Clin. J. Pain.26(Suppl. 10),S16–S20 (2010).
    • 174  Ioannidis JP, Boffetta P, Little J et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol.37(1),120–132 (2008).
    • 175  Swen JJ, Wilting I, De Goede AL et al. Pharmacogenetics: from bench to byte. Clin. Pharmacol. Ther.83(5),781–787 (2008).
    • 176  Sia AT, Lim Y, Lim EC et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology109(3),520–526 (2008).
    • 177  Fukuda K, Hayashida M, Ide S et al. Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain147(1–3),194–201 (2009).
    • 178  Landau R, Kern C, Columb MO, Smiley RM, Blouin JL. Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain139(1),5–14 (2008).
    • 179  Sery O, Hrazdilova O, Didden W et al. The association of monoamine oxidase B functional polymorphism with postoperative pain intensity. Neuro Endocrinol. Lett.27(3),333–337 (2006).
    • 180  Kim H, Lee H, Rowan J, Brahim J, Dionne RA. Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans. Mol. Pain2,24 (2006).
    • 181  Bessler H, Shavit Y, Mayburd E, Smirnov G, Beilin B. Postoperative pain, morphine consumption, and genetic polymorphism of IL-1β and IL-1 receptor antagonist. Neurosci. Lett.404(1–2),154–158 (2006).
    • 201  CYP2D6 allele nomenclature. www.cypalleles.ki.se/cyp2d6.htm
    • 202  US FDA Warning on Codeine Use by Nursing Mothers. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108968.htm
    • 203  US FDA: FDA Drug Safety Communication: codeine use in certain children after tonsillectomy and/or adenoidectomy may lead to rare, but life-threatening adverse events or death. www.fda.gov/drugs/drugsafety/ucm313631.htm