We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenetics of antidepressant drugs: current clinical practice and future directions

    Sneha Narasimhan

    University of Pennsylvania School of Medicine, Department of Psychiatry , Center for Neurobiology & Behavior, Translational Research Laboratories, 125 South 31st Street, Room 2213, Philadelphia, PA 19104, USA.

    &
    Falk W Lohoff

    * Author for correspondence

    University of Pennsylvania School of Medicine, Department of Psychiatry , Center for Neurobiology & Behavior, Translational Research Laboratories, 125 South 31st Street, Room 2213, Philadelphia, PA 19104, USA.

    Published Online:https://doi.org/10.2217/pgs.12.1

    While antidepressants are widely used to treat mood and anxiety disorders, only half of the patients will respond to antidepressant treatment and only one-third of patients experience a full remission of symptoms. The identification of genetic biomarkers that predict antidepressant-treatment response can improve current clinical practice. This is an emerging field known as pharmacogenetics, which comprises of genetic studies on both the pharmacokinetics and pharmacodynamics of treatment response. Recent studies on antidepressant-treatment response have focused on both aspects of pharmacogenetics research, identifying new candidate genes that may predict better treatment response for patients. This paper reviews recent findings on the pharmacogenetics of antidepressant drugs and future clinical applications. Ultimately, these studies should lead to the use of genetic testing to guide the use of antidepressants in clinical practice.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Rush AJ Trivedi MH, Wisniewski SR et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry163,1905–1917 (2006).
    • Joyce PR, Paykel ES. Predictors of drug response in depression. Arch. Gen. Psychiatry46(1),89–99 (1989).
    • Lieberman J. History of the use of antidepressants in primary care. Primary Care Companion: J. Clin. Psychiatry5,6–10 (2003).
    • Olfson M, Marcus SC. National patterns in antidepressant medication treatment. Arch. Gen. Psychiatry66(8),848–856 (2009).
    • Ballenger JC, Davidson JR, Lecrubier Y et al. Consensus statement on social anxiety disorder from the International Consensus Group on Depression and Anxiety. J Clin. Psychiatry59(Suppl. 17),54–60 (1998).
    • Stein DJ, Ipser J, McAnda N. Pharmacotherapy of posttraumatic stress disorder: a review of meta-analyses and treatment guidelines. CNS Spectr.14(1 Suppl. 1),25–31 (2009).
    • Lynch M. Antidepressants as analgesics: a review of randomized controlled trials. J. Psychiatry Neurosci.26,30–36 (2001).
    • Fountoulakis KN, Vieta E, Siamouli M et al. Treatment of bipolar disorder: a complex treatment for a multi-faceted disorder. Ann. Gen. Psychiatry6,27 (2007).
    • Wittchen H. Generalized anxiety disorder: prevalence, burden, and cost to society. Depress. Anxiety.16,162–171 (2002).
    • 10  Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry62(6),617–627 (2005).
    • 11  Schlesser MA, Altshuler KZ. The genetics of affective disorder: data, theory, and clinical applications. Hosp. Community Psychiatry34(5),415–422 (1983).
    • 12  Angst J. A clinical analysis of the effects of tofranil in depression. Longitudinal and follow-up studies. Treatment of blood-relations. Psychopharmacologia2,381–407 (1961).
    • 13  Pare CM. Differentiation of two genetically specific types of depression by the response to antidepressant drugs. Humangenetik9(3),199–201 (1970).
    • 14  Staddon S, Arranz MJ, Mancama D, Mata I, Kerwin RW. Clinical applications of pharmacogenetics in psychiatry. Psychopharmacology (Berl.)162(1),18–23 (2002).
    • 15  Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu. Rev. Genomics Hum. Genet.7,223–245 (2006).
    • 16  Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M. Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J. Pharmacol. Exp. Ther.278(1),441–446 (1996).
    • 17  Gaedigk A, Ndjountche L, Divakaran K et al. Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity. characterization of gene duplication events. Clin. Pharmacol. Ther.81(2),242–251 (2007).
    • 18  Bertilsson L, Dahl Ml, Dalen P, Al-Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br. J. Clin. Pharmacol.53(2),111–122 (2002).
    • 19  Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteux G. Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther. Drug Monit.25(6),738–742 (2003).
    • 20  Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther. Drug Monit.22(2),202–208 (2000).
    • 21  Shams ME, Arneth B, Hiemke C et al.CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J. Clin. Pharm. Ther.31(5),493–502 (2006).
    • 22  Nichols AI, Focht K, Jiang Q, Preskorn SH, Kane CP. Pharmacokinetics of venlafaxine extended release 75 mg and desvenlafaxine 50 mg in healthy CYP2D6 extensive and poor metabolizers: a randomized, open-label, two-period, parallel-group, crossover study. Clin. Drug Investig.31(3),155–167 (2011).
    • 23  Smith DA, Abel SM, Hyland R, Jones BC. Human cytochrome P450s: selectivity and measurement in vivo. Xenobiotica28(12),1095–1128 (1998).
    • 24  Smith G, Stubbins MJ, Harries LW, Wolf CR. Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica28(12),1129–1165 (1998).
    • 25  Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin. Pharmacol. Ther.83(2),322–327 (2008).
    • 26  Noehr-Jensen L, Zwisler ST, Larsen F et al. Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur. J. Clin. Pharmacol.65(9),887–894 (2009).
    • 27  Jin Y, Pollock Bg, Frank E et al. Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J. Clin. Pharmacol.50(1),62–72 (2010).
    • 28  Huezo-Diaz P, Perroud N, Spencer E et al.CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J. Psychopharmacol. doi:10.1177/0269881111414451 (2011) (Epub ahead of print).
    • 29  Steimer W, Zopf K, von Amelunxen S et al. Amitriptyline or not, that is the question. pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin. Chem.51(2),376–385 (2005).
    • 30  Mihara K, Otani K, Tybring G, Dahl ML, Bertilsson L, Kaneko S. The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J. Clin. Psychopharmacol.17(6),467–471 (1997).
    • 31  Tsai MH, Lin KM, Hsiao MC et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics11(4),537–546 (2010).
    • 32  Lobello KW, Preskorn SH, Guico-Pabia CJ et al. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J. Clin. Psychiatry71(11),1482–1487 (2010).
    • 33  Serretti A, Calati R, Massat I et al. Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int. Clin. Psychopharmacol.24(5),250–256 (2009).
    • 34  Grasmader K, Verwohlt PL, Rietschel M et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur. J. Clin. Pharmacol.60(5),329–336 (2004).
    • 35  Peters EJ, Slager SL, Kraft JB et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS ONE3(4),e1872 (2008).
    • 36  Uhr M, Tontsch A, Namendorf C et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant-treatment response in depression. Neuron57(2),203–209 (2008).
    • 37  Uhr M, Steckler T, Yassouridis A, Holsboer F. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood–brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology22(4),380–387 (2000).
    • 38  Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol. Psychiatry54(8),840–846 (2003).
    • 39  Wang JS, Zhu HJ, Gibson BB, Markowitz JS, Donovan JL, Devane CL. Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein. Biol. Pharm. Bull.31(2),231–234 (2008).
    • 40  Ejsing TB, Hasselstrom J, Linnet K. The influence of P-glycoprotein on cerebral and hepatic concentrations of nortriptyline and its metabolites. Drug Metabol. Drug Interact.21(3–4),139–162 (2006).
    • 41  Gex-Fabry M, Eap CB, Oneda B et al.CYP2D6 and ABCB1 genetic variability. influence on paroxetine plasma level and therapeutic response. Ther. Drug Monit.30(4),474–482 (2008).
    • 42  Kato M, Fukuda T, Serretti A et al.ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry32(2),398–404 (2008).
    • 43  Nikisch G, Eap CB, Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol. Res.58(5–6),344–347 (2008).
    • 44  Fukui N, Suzuki Y, Sawamura K et al. Dose-dependent effects of the 3435 C>T genotype of ABCB1 gene on the steady-state plasma concentration of fluvoxamine in psychiatric patients. Ther. Drug Monit.29(2),185–189 (2007).
    • 45  Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BB, Schatzberg AF, Murphy GM Jr. ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet. Genomics20(8),467–475 (2010).
    • 46  Lin KM, Chiu YF, Tsai IJ et al.ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenet. Genomics21(4),163–170 (2011).
    • 47  Mihaljevic Peles A, Bozina N, Sagud M, Rojnic Kuzman M, Lovric M. MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry32(6),1439–1444 (2008).
    • 48  Laika B, Leucht S, Steimer W. ABCB1 (P-glycoprotein/MDR1) gene G2677T/a sequence variation (polymorphism): lack of association with side effects and therapeutic response in depressed inpatients treated with amitriptyline. Clin. Chem.52(5),893–895 (2006).
    • 49  Menu P, Gressier F, Verstuyft C, Hardy P, Becquemont L, Corruble E. Antidepressants and ABCB1 gene C3435T functional polymorphism: a naturalistic study. Neuropsychobiology62(3),193–197 (2010).
    • 50  Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant-treatment response in duloxetine-treated patients. Biol. Psychiatry67(11),1110–1113 (2010).
    • 51  Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol. Psychiatry14(12),1105–1118 (2009).
    • 52  Sakowski SA, Geddes TJ, Thomas DM, Levi E, Hatfield JS, Kuhn DM. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res.1085(1),11–18 (2006).
    • 53  Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E. Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur. Neuropsychopharmacol.11(5),375–380 (2001).
    • 54  Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol. Psychiatry6(5),586–592 (2001).
    • 55  Ham BJ, Lee BC, Paik JW et al. Association between the tryptophan hydroxylase-1 gene A218C polymorphism and citalopram antidepressant response in a Korean population. Prog. Neuropsychopharmacol. Biol. Psychiatry31(1),104–107 (2007).
    • 56  Viikki M, Kampman O, Illi A et al.TPH1 218A/C polymorphism is associated with major depressive disorder and its treatment response. Neurosci. Lett.468(1),80–84 (2010).
    • 57  Ham BJ, Lee MS, Lee HJ et al. No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressant response in a Korean population. Psychiatr. Genet.15(4),299–301 (2005).
    • 58  Hong CJ, Chen TJ, Yu YW, Tsai SJ. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J.6(1),27–33 (2006).
    • 59  Kato M, Wakeno M, Okugawa G et al. No association of TPH1 218A/C polymorphism with treatment response and intolerance to SSRIs in Japanese patients with major depression. Neuropsychobiology56(4),167–171 (2007).
    • 60  Uher R, Huezo-Diaz P, Perroud N et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J.9(4),225–233 (2009).▪ Summarizes findings from the Genome-Based Therapeutic Drugs for Depression (GENDEP) project, a large, prospective clinical trial that investigated many candidate genes and found promising results in some, while finding no associations with others.
    • 61  Illi A, Setala-Soikkeli E, Viikki M et al.5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport20(12),1125–1128 (2009).
    • 62  Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry15(5),473–500 (2010).▪ Major review and meta-analysis paper that investigates most of the pharmacodynamic candidate genes studied in major depressive disorder (MDD); however, it was initially published in 2008 and its findings do not include more recent studies.
    • 63  Zhang X, Gainetdinov RR, Beaulieu JM et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron45(1),11–16 (2005).
    • 64  Tzvetkov MV, Brockmoller J, Roots I, Kirchheiner J. Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet. Genomics18(6),495–506 (2008).
    • 65  Peters EJ, Slager SL, Mcgrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol. Psychiatry9(9),879–889 (2004).
    • 66  Tsai SJ, Hong CJ, Liou YJ et al. Tryptophan hydroxylase 2 gene is associated with major depression and antidepressant-treatment response. Prog. Neuropsychopharmacol. Biol. Psychiatry33(4),637–641 (2009).
    • 67  Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet.103(3),273–279 (1998).
    • 68  Tzeng DS, Chien CC, Lung FW, Yang CY. MAOA gene polymorphisms and response to mirtazapine in major depression. Hum. Psychopharmacol.24(4),293–300 (2009).
    • 69  Domschke K, Hohoff C, Mortensen LS et al. Monoamine oxidase A variant influences antidepressant-treatment response in female patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry32(1),224–228 (2008).
    • 70  Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology30(9),1719–1723 (2005).
    • 71  Serretti A, Zanardi R, Franchini L et al. Pharmacogenetics of selective serotonin reuptake inhibitor response: a 6-month follow-up. Pharmacogenetics14(9),607–613 (2004).
    • 72  Muller DJ, Schulze TG, Macciardi F et al. Moclobemide response in depressed patients. association study with a functional polymorphism in the monoamine oxidase A promoter. Pharmacopsychiatry35(4),157–158 (2002).
    • 73  Yoshida K, Naito S, Takahashi H et al. Monoamine oxidase. A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry26(7–8),1279–1283 (2002).
    • 74  Yoshida K, Naito S, Takahashi H et al. Monoamine oxidase A gene polymorphism, 5-HT 2A receptor gene polymorphism and incidence of nausea induced by fluvoxamine. Neuropsychobiology48(1),10–13 (2003).
    • 75  Leuchter AF, Mccracken JT, Hunter AM, Cook IA, Alpert JE. Monoamine oxidase a and catechol-o-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J. Clin. Psychopharmacol.29(4),372–377 (2009).
    • 76  Tadic A, Muller MJ, Rujescu D et al. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am. J. Med. Genet. B NeuroPsychiatr. Genet.144B(3),325–331 (2007).
    • 77  Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol. Psychiatry65(9),785–791 (2009).
    • 78  Lachman HM, Morrow B, Shprintzen R et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am. J. Med. Genet.67(5),468–472 (1996).
    • 79  Benedetti F, Colombo C, Pirovano A, Marino E, Smeraldi E. The catechol-O-methyltransferase Val(108/158)Met polymorphism affects antidepressant response to paroxetine in a naturalistic setting. Psychopharmacology (Berl.)203(1),155–160 (2009).
    • 80  Benedetti F, Dallaspezia S, Colombo C, Lorenzi C, Pirovano A, Smeraldi E. Effect of catechol-O-methyltransferase Val(108/158)Met polymorphism on antidepressant efficacy of fluvoxamine. Eur. Psychiatry25(8),476–478 (2010).
    • 81  Szegedi A, Rujescu D, Tadic A et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J.5(1),49–53 (2005).
    • 82  Tsai SJ, Gau YT, Hong CJ, Liou YJ, Yu YW, Chen TJ. Sexually dimorphic effect of catechol-O-methyltransferase val158met polymorphism on clinical response to fluoxetine in major depressive patients. J. Affect. Disord.113(1–2),183–187 (2009).
    • 83  Baune BT, Hohoff C, Berger K et al. Association of the COMT val158met variant with antidepressant-treatment response in major depression. Neuropsychopharmacology33(4),924–932 (2008).
    • 84  Yoshida K, Higuchi H, Takahashi H et al. Influence of the tyrosine hydroxylase val81met polymorphism and catechol-O-methyltransferase val158met polymorphism on the antidepressant effect of milnacipran. Hum. Psychopharmacol.23(2),121–128 (2008).
    • 85  Lesch KP, Bengel D, Heils A et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science274(5292),1527–1531 (1996).
    • 86  Naylor L, Dean B, Pereira A, Mackinnon A, Kouzmenko A, Copolov D. No association between the serotonin transporter-linked promoter region polymorphism and either schizophrenia or density of the serotonin transporter in human hippocampus. Mol. Med.4(10),671–674 (1998).
    • 87  Willeit M, Stastny J, Pirker W et al. No evidence for in vivo regulation of midbrain serotonin transporter availability by serotonin transporter promoter gene polymorphism. Biol. Psychiatry50(1),8–12 (2001).
    • 88  Shioe K, Ichimiya T, Suhara T et al. No association between genotype of the promoter region of serotonin transporter gene and serotonin transporter binding in human brain measured by PET. Synapse48(4),184–188 (2003).
    • 89  Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol. Psychiatry3(6),508–511 (1998).
    • 90  Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J. Clin. Psychopharmacol.20(1),105–107 (2000).
    • 91  Pollock Bg, Ferrell Re, Mulsant Bh et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology23(5),587–590 (2000).
    • 92  Zanardi R, Serretti A, Rossini D et al. Factors affecting fluvoxamine antidepressant activity. influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol. Psychiatry50(5),323–330 (2001).
    • 93  Joyce PR, Mulder RT, Luty SE et al. Age-dependent antidepressant pharmacogenomics. polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int. J. Neuropsychopharmacol.6(4),339–346 (2003).
    • 94  Perlis RH, Mischoulon D, Smoller JW et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol. Psychiatry54(9),879–883 (2003).
    • 95  Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J. Clin. Psychopharmacol.23(6),563–567 (2003).
    • 96  Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl.)174(4),525–529 (2004).
    • 97  Serretti A, Cusin C, Rossini D, Artioli P, Dotoli D, Zanardi R. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am. J. Med. Genet. B NeuroPsychiatr. Genet.129B(1),36–40 (2004).
    • 98  Wilkie MJ, Smith G, Day RK et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J.9(1),61–70 (2009).
    • 99  Mrazek DA, Rush AJ, Biernacka JM et al.SLC6A4 variation and citalopram response. Am. J. Med. Genet. B NeuroPsychiatr. Genet.150B(3),341–351 (2009).
    • 100  Huezo-Diaz P, Uher R, Smith R et al. Moderation of antidepressant response by the serotonin transporter gene. Br. J. Psychiatry195(1),30–38 (2009).
    • 101  Smits KM, Smits LJ, Schouten JS, Peeters FP, Prins MH. Does pretreatment testing for serotonin transporter polymorphisms lead to earlier effects of drug treatment in patients with major depression? A decision-analytic model. Clin. Ther.29(4),691–702 (2007).
    • 102  Kronenberg S, Apter A, Brent D et al. Serotonin transporter polymorphism (5-HTTLPR) and citalopram effectiveness and side effects in children with depression and/or anxiety disorders. J. Child. Adolesc. Psychopharmacol.17(6),741–750 (2007).
    • 103  Murphy GM Jr, Hollander SB, Rodrigues HE, Kremer C, Schatzberg Af. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch. Gen. Psychiatry61(11),1163–1169 (2004).
    • 104  Taylor MJ, Sen S, Bhagwagar Z. Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol. Psychiatry68(6),536–543 (2010).▪ Recent meta-analysis of the 5-HTTLPR in antidepressant-treatment response that did not find an association with this polymorphism, despite many documented studies showing positive association.
    • 105  Minov C, Baghai TC, Schule C et al. Serotonin-2A-receptor and -transporter polymorphisms. lack of association in patients with major depression. Neurosci. Lett.303(2),119–122 (2001).
    • 106  Kirchheiner J, Nickchen K, Sasse J, Bauer M, Roots I, Brockmoller J. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J.7(1),48–55 (2007).
    • 107  Dogan O, Yuksel N, Ergun MA et al. Serotonin transporter gene polymorphisms and sertraline response in major depression patients. Genet. Test.12(2),225–231 (2008).
    • 108  Kim H, Lim SW, Kim S et al. Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. JAMA296(13),1609–1618 (2006).
    • 109  Ito K, Yoshida K, Sato K et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res.111(2–3),235–239 (2002).
    • 110  Yoshida K, Takahashi H, Higuchi H et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am. J. Psychiatry161(9),1575–1580 (2004).
    • 111  Yoshida K, Ito K, Sato K et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry26(2),383–386 (2002).
    • 112  Kim DK, Lim SW, Lee S et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport11(1),215–219 (2000).
    • 113  Kang RH, Wong ML, Choi MJ, Paik JW, Lee MS. Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry31(6),1317–1321 (2007).
    • 114  Keers R, Uher R, Huezo-Diaz P et al. Interaction between serotonin transporter gene variants and life events predicts response to antidepressants in the GENDEP project. Pharmacogenomics J.11(2),138–145 (2011).
    • 115  Mandelli L, Mazza M, Martinotti G et al. Harm avoidance moderates the influence of serotonin transporter gene variants on treatment outcome in bipolar patients. J. Affect. Disord.119(1–3),205–209 (2009).
    • 116  Hu XZ, Rush AJ, Charney D et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch. Gen. Psychiatry64(7),783–792 (2007).
    • 117  Putzhammer A, Schoeler A, Rohrmeier T, Sand P, Hajak G, Eichhammer P. Evidence of a role for the 5-HTTLPR genotype in the modulation of motor response to antidepressant treatment. Psychopharmacology (Berl.)178(2–3),303–308 (2005).
    • 118  Maron E, Tammiste A, Kallassalu K et al. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur. Neuropsychopharmacol.19(6),451–456 (2009).
    • 119  Lee SH, Choi TK, Lee E, Seok JH, Lee HS, Kim SJ. Serotonin transporter gene polymorphism associated with short-term treatment response to venlafaxine. Neuropsychobiology62(3),198–206 (2010).
    • 120  Hougardy DM, Egberts TC, van der Graaf F, Brenninkmeijer VJ, Derijks LJ. Serotonin transporter polymorphism and bleeding time during SSRI therapy. Br. J. Clin. Pharmacol.65(5),761–766 (2008).
    • 121  Kraft JB, Slager SL, McGrath PJ, Hamilton SP. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol. Psychiatry58(5),374–381 (2005).
    • 122  Murthy NV, Selvaraj S, Cowen PJ et al. Serotonin transporter polymorphisms (SLC6A4 insertion/deletion and rs25531) do not affect the availability of 5-HTT to [11C] DASB binding in the living human brain. Neuroimage52(1),50–54 (2010).
    • 123  Smits KM, Smits LJ, Schouten JS, Stelma FF, Nelemans P, Prins MH. Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol. Psychiatry9(5),433–441 (2004).
    • 124  Popp J, Leucht S, Heres S, Steimer W. Serotonin transporter polymorphisms and side effects in antidepressant therapy – a pilot study. Pharmacogenomics7(2),159–166 (2006).
    • 125  Smits K, Smits L, Peeters F et al. Serotonin transporter polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake inhibitors. Int. Clin. Psychopharmacol.22(3),137–143 (2007).
    • 126  Takahashi H, Yoshida K, Ito K et al. No association between the serotonergic polymorphisms and incidence of nausea induced by fluvoxamine treatment. Eur. Neuropsychopharmacol.12(5),477–481 (2002).
    • 127  Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. Evidence for a combined genetic effect of the 5-HT(1A) receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J. Psychopharmacol.19(2),166–172 (2005).
    • 128  Kato M, Fukuda T, Wakeno M et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am. J. Med. Genet. B NeuroPsychiatr. Genet.150B(1),115–123 (2009).
    • 129  Parsey RV, Olvet DM, Oquendo MA, Huang YY, Ogden RT, Mann JJ. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology31(8),1745–1749 (2006).
    • 130  Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int. J. Neuropsychopharmacol.7(4),453–460 (2004).
    • 131  Lemonde S, Du L, Bakish D, Hrdina P, Albert PR. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int. J. Neuropsychopharmacol.7(4),501–506 (2004).
    • 132  Baune BT, Hohoff C, Roehrs T, Deckert J, Arolt V, Domschke K. Serotonin receptor 1A-1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression? Neurosci. Lett.436(2),111–115 (2008).
    • 133  Lin E, Chen PS, Chang HH et al. Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry33(7),1167–1172 (2009).
    • 134  Suzuki Y, Sawamura K, Someya T. The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenomics J.4(4),283–286 (2004).
    • 135  Levin GM, Bowles TM, Ehret MJ et al. Assessment of human serotonin 1A receptor polymorphisms and SSRI responsiveness. Mol. Diagn. Ther.11(3),155–160 (2007).
    • 136  Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur. Neuropsychopharmacol.16(7),498–503 (2006).
    • 137  Xu Z, Zhang Z, Shi Y et al. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J. Psychopharmacol. doi:10.1177/0269881111414452 (2011) (Epub ahead of print).
    • 138  Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS. Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology52(3),155–162 (2005).
    • 139  Kato M, Fukuda T, Wakeno M et al. Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology53(4),186–195 (2006).
    • 140  Cusin C, Serretti A, Zanardi R et al. Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int. J. Neuropsychopharmacol.5(1),27–35 (2002).
    • 141  Kishi T, Yoshimura R, Kitajima T et al. HTR2A is associated with SSRI response in major depressive disorder in a Japanese cohort. Neuromolecular Med.12(3),237–242 (2010).
    • 142  Murphy GM Jr, Kremer C, Rodrigues HE, Schatzberg AF. Pharmacogenetics of antidepressant medication intolerance. Am. J. Psychiatry160(10),1830–1835 (2003).
    • 143  Suzuki Y, Sawamura K, Someya T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P4502D6 genes synergistically predict fluvoxamine-induced side effects in japanese depressed patients. Neuropsychopharmacology31(4),825–831 (2006).
    • 144  Bishop JR, Moline J, Ellingrod VL, Schultz SK, Clayton AH. Serotonin 2A-1438 G/A and G-protein Beta3 subunit C825T polymorphisms in patients with depression and SSRI-associated sexual side-effects. Neuropsychopharmacology31(10),2281–2288 (2006).
    • 145  Spurlock G, Heils A, Holmans P et al. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol. Psychiatry3(1),42–49 (1998).
    • 146  Mcmahon FJ, Buervenich S, Charney D et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am. J. Hum. Genet.78(5),804–814 (2006).
    • 147  Peters EJ, Slager SL, Jenkins GD et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet. Genomics19(1),1–10 (2009).
    • 148  Horstmann S, Lucae S, Menke A et al. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology35(3),727–740 (2010).
    • 149  Lucae S, Ising M, Horstmann S et al.HTR2A gene variation is involved in antidepressant-treatment response. Eur. Neuropsychopharmacol.20(1),65–68 (2010).
    • 150  Noro M, Antonijevic I, Forray C et al.5HT1A and 5HT2A receptor genes in treatment response phenotypes in major depressive disorder. Int. Clin. Psychopharmacol.25(4),228–231 (2010).
    • 151  Tanaka M, Kobayashi D, Murakami Y et al. Genetic polymorphisms in the 5-hydroxytryptamine type 3B receptor gene and paroxetine-induced nausea. Int. J. Neuropsychopharmacol.11(2),261–267 (2008).
    • 152  Sugai T, Suzuki Y, Sawamura K, Fukui N, Inoue Y, Someya T. The effect of 5-hydroxytryptamine 3A and 3B receptor genes on nausea induced by paroxetine. Pharmacogenomics J.6(5),351–356 (2006).
    • 153  Lee SH, Lee KJ, Lee HJ, Ham BJ, Ryu SH, Lee MS. Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin. Neurosci.59(2),140–145 (2005).
    • 154  Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ. Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology44(4),172–175 (2001).
    • 155  Geracitano R, Federici M, Bernardi G, Mercuri NB. On the effects of psychostimulants, antidepressants, and the antiparkinsonian drug levodopa on dopamine neurons. Ann. NY Acad. Sci.1074,320–329 (2006).
    • 156  Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J.1(2),152–156 (2001).
    • 157  Hedenmalm K, Guzey C, Dahl ML, Yue QY, Spigset O. Risk factors for extrapyramidal symptoms during treatment with selective serotonin reuptake inhibitors, including cytochrome P-450 enzyme, and serotonin and dopamine transporter and receptor polymorphisms. J. Clin. Psychopharmacol.26(2),192–197 (2006).
    • 158  Serretti A, Zanardi R, Cusin C et al. No association between dopamine D(2) and D(4) receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res.104(3),195–203 (2001).
    • 159  Serretti A, Benedetti F, Colombo C, Lilli R, Lorenzi C, Smeraldi E. Dopamine receptor D4 is not associated with antidepressant activity of sleep deprivation. Psychiatry Res.89(2),107–114 (1999).
    • 160  Garriock HA, Delgado P, Kling MA et al. Number of risk genotypes is a risk factor for major depressive disorder: a case control study. Behav. Brain Funct.2,24 (2006).
    • 161  Baffa A, Hohoff C, Baune BT et al. Norepinephrine and serotonin transporter genes. impact on treatment response in depression. Neuropsychobiology62(2),121–131 (2010).
    • 162  Zill P, Baghai TC, Engel R et al. Beta-1-adrenergic receptor gene in major depression. influence on antidepressant-treatment response. Am. J. Med. Genet. B NeuroPsychiatr. Genet.120B(1),85–89 (2003).
    • 163  Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology23(5),477–501 (2000).
    • 164  Liu Z, Zhu F, Wang G et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci. Lett.414(2),155–158 (2007).
    • 165  Licinio J, O’Kirwan F, Irizarry K et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant-treatment response in Mexican-Americans. Mol. Psychiatry9(12),1075–1082 (2004).
    • 166  Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord.104(1–3),83–90 (2007).
    • 167  van Rossum EF, Binder EB, Majer M et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol. Psychiatry59(8),681–688 (2006).
    • 168  Brouwer JP, Appelhof BC, van Rossum EF et al. Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology31(10),1154–1163 (2006).
    • 169  Binder EB, Salyakina D, Lichtner P et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet.36(12),1319–1325 (2004).
    • 170  Lekman M, Laje G, Charney D et al. The FKBP5-gene in depression and treatment response – an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol. Psychiatry63(12),1103–1110 (2008).
    • 171  Kirchheiner J, Lorch R, Lebedeva E et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics9(7),841–846 (2008).
    • 172  Tsai SJ, Hong CJ, Chen TJ, Yu YW. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am. J. Med. Genet. B NeuroPsychiatr. Genet.144B(8),1097–1098 (2007).
    • 173  Zou YF, Wang F, Feng XL et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci. Lett.484(1),56–61 (2010).▪ Recent meta-analysis of hypothalamic–pituitary–adrenal axis genes that found a significant association with FKBP5 polymorphisms and antidepressant-treatment response in MDD.
    • 174  Horstmann S, Lucae A, Menke A Et al. Association of GRIK4 and HTR2A genes with antidepressant treatment in the MARS cohort of depressed inpatients [poster]. Neuropsychopharmacology18,S214–S215 (2008).
    • 175  Perroud N, Bondolfi G, Uher R et al. Clinical and genetic correlates of suicidal ideation during antidepressant treatment in a depressed outpatient sample. Pharmacogenomics12(3),365–377 (2011).
    • 176  Brent D, Melhem N, Ferrell R et al. Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. Am. J. Psychiatry167(2),190–197 (2010).
    • 177  Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate CA Jr. Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depressive disorder. J. Clin. Psychiatry69(6),946–958 (2008).
    • 178  Nowak G, Li Y, Paul IA. Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram treatment. Eur. J. Pharmacol.295(1),75–85 (1996).
    • 179  Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry29(1),23–26 (1996).
    • 180  Paddock S, Laje G, Charney D et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am. J. Psychiatry164(8),1181–1188 (2007).
    • 181  Laje G, Perlis RH, Rush AJ, McMahon FJ. Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr. Serv.60(11),1446–1457 (2009).
    • 182  Laje G, Paddock S, Manji H et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am. J. Psychiatry164(10),1530–1538 (2007).
    • 183  Perlis RH, Laje G, Smoller JW, Fava M, Rush AJ, Mcmahon FJ. Genetic and clinical predictors of sexual dysfunction in citalopram-treated depressed patients. Neuropsychopharmacology34(7),1819–1828 (2009).
    • 184  Rogoz Z, Skuza G, Legutko B. Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J. Physiol. Pharmacol.56(4),661–671 (2005).
    • 185  Rogoz Z, Legutko B. Combined treatment with imipramine and metyrapone induces hippocampal and cortical brain-derived neurotrophic factor gene expression in rats. Pharmacol. Rep.57(6),840–844 (2005).
    • 186  Rogoz Z, Skuza G, Legutko B. Repeated co-treatment with imipramine and amantadine induces hippocampal brain-derived neurotrophic factor gene expression in rats. J. Physiol. Pharmacol.58(2),219–234 (2007).
    • 187  Reagan LP, Hendry RM, Reznikov LR et al. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala. Eur. J. Pharmacol.565(1–3),68–75 (2007).
    • 188  Calabrese F, Molteni R, Maj PF et al. Chronic duloxetine treatment induces specific changes in the expression of BDNF transcripts and in the subcellular localization of the neurotrophin protein. Neuropsychopharmacology32(11),2351–2359 (2007).
    • 189  Jacobsen JP, Mork A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res.1024(1–2),183–192 (2004).
    • 190  Egan MF, Kojima M, Callicott JH et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell112(2),257–269 (2003).
    • 191  Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res.1118(1),176–182 (2006).
    • 192  Yoshida K, Higuchi H, Kamata M et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J. Psychopharmacol.21(6),650–656 (2007).
    • 193  Chi MH, Chang HH, Lee SY et al. Brain derived neurotrophic factor gene polymorphism (Val66Met) and short-term antidepressant response in major depressive disorder. J. Affect. Disord.126(3),430–435 (2010).
    • 194  Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am. J. Med. Genet. B NeuroPsychiatr. Genet.123B(1),19–22 (2003).
    • 195  Wilkie MJ, Smith D, Reid IC et al. A splice site polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression. Pharmacogenet. Genomics17(3),207–215 (2007).
    • 196  Gratacos M, Soria V, Urretavizcaya M et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant-treatment outcome in mood disorders. Pharmacogenomics J.8(2),101–112 (2008).
    • 197  Domschke K, Lawford B, Laje G et al. Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant-treatment response. Int. J. Neuropsychopharmacol.13(1),93–101 (2010).
    • 198  Licinio J, Dong C, Wong ML. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant-treatment response. Arch. Gen. Psychiatry66(5),488–497 (2009).
    • 199  Perroud N, Aitchison KJ, Uher R et al. Genetic predictors of increase in suicidal ideation during antidepressant treatment in the GENDEP project. Neuropsychopharmacology34(12),2517–2528 (2009).
    • 200  Siffert W, Rosskopf D, Siffert G et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet18(1),45–48 (1998).
    • 201  Zill P, Baghai TC, Zwanzger P et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport11(9),1893–1897 (2000).
    • 202  Serretti A, Lorenzi C, Cusin C et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur. Neuropsychopharmacol.13(2),117–122 (2003).
    • 203  Lee HJ, Cha JH, Ham BJ et al. Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J.4(1),29–33 (2004).
    • 204  Keers R, Bonvicini C, Scassellati C et al. Variation in GNB3 predicts response and adverse reactions to antidepressants. J. Psychopharmacol.25(7),867–874 (2011).
    • 205  Kang RH, Hahn SW, Choi MJ, Lee MS. Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression. Neuropsychobiology56(1),1–5 (2007).
    • 206  Kato M, Wakeno M, Okugawa G et al. Antidepressant response and intolerance to SSRI is not influenced by G-protein beta3 subunit gene C825T polymorphism in Japanese major depressive patients. Prog. Neuropsychopharmacol. Biol. Psychiatry32(4),1041–1044 (2008).
    • 207  Kramer MS, Cutler N, Feighner J et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science281(5383),1640–1645 (1998).
    • 208  Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest.86(4),1343–1346 (1990).
    • 209  Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol. Psychiatry40(11),1122–1127 (1996).
    • 210  Baghai TC, Schule C, Zwanzger P et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders. Mol. Psychiatry6(3),258–259 (2001).
    • 211  Baghai TC, Schule C, Zill P et al. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci. Lett.363(1),38–42 (2004).
    • 212  Bondy B, Baghai TC, Zill P et al. Genetic variants in the angiotensin I-converting-enzyme (ACE) and angiotensin II receptor (AT1) gene and clinical outcome in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry29(6),1094–1099 (2005).
    • 213  Dowlatshahi D, Macqueen GM, Wang JF, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet352(9142),1754–1755 (1998).
    • 214  Perlis RH, Purcell S, Fava M et al. Association between treatment-emergent suicidal ideation with citalopram and polymorphisms near cyclic adenosine monophosphate response element binding protein in the STAR*D study. Arch. Gen. Psychiatry64(6),689–697 (2007).
    • 215  Ising M, Lucae S, Binder EB et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch. Gen. Psychiatry66(9),966–975 (2009).
    • 216  Uher R, Perroud N, Ng MY et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am. J. Psychiatry167(5),555–564 (2010).▪ Recent approaches in pharmacogenetics of antidepressants drugs have focused on genome-wide association studies that find positive associations in novel candidate genes, such as this one in the GENDEP sample.
    • 217  Garriock HA, Kraft JB, Shyn SI et al. A genomewide association study of citalopram response in major depressive disorder. Biol. Psychiatry67(2),133–138 (2010).
    • 218  Hettema JM. What is the genetic relationship between anxiety and depression? Am. J. Med. Genet. C Semin. Med. Genet.148C(2),140–146 (2008).
    • 219  Bespalov AY, van Gaalen MM, Gross G. Antidepressant treatment in anxiety disorders. Curr. Top. Behav. Neurosci.2,361–390 (2010).
    • 220  Tiwari AK, Souza RP, Muller DJ. Pharmacogenetics of anxiolytic drugs. J. Neural. Transm.116(6),667–677 (2009).
    • 221  Denys D, Van Nieuwerburgh F, Deforce D, Westenberg Hg. Prediction of response to paroxetine and venlafaxine by serotonin-related genes in obsessive-compulsive disorder in a randomized, double-blind trial. J. Clin. Psychiatry68(5),747–753 (2007).
    • 222  Mcdougle CJ, Epperson CN, Price LH, Gelernter J. Evidence for linkage disequilibrium between serotonin transporter protein gene (SLC6A4) and obsessive compulsive disorder. Mol. Psychiatry3(3),270–273 (1998).
    • 223  Billett EA, Richter MA, King N, Heils A, Lesch KP, Kennedy JL. Obsessive compulsive disorder, response to serotonin reuptake inhibitors and the serotonin transporter gene. Mol. Psychiatry2(5),403–406 (1997).
    • 224  Di Bella D, Erzegovesi S, Cavallini MC, Bellodi L. Obsessive-Compulsive Disorder, 5-HTTLPR polymorphism and treatment response. Pharmacogenomics J.2(3),176–181 (2002).
    • 225  Zhang L, Liu X, Li T, Yang Y, Hu X, Collier D. [Molecular pharmacogenetic studies of drug responses to obsessive-compulsive disorder and six functional genes]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi21(5),479–481 (2004).
    • 226  Perna G, Favaron E, Di Bella D, Bussi R, Bellodi L. Antipanic efficacy of paroxetine and polymorphism within the promoter of the serotonin transporter gene. Neuropsychopharmacology30(12),2230–2235 (2005).
    • 227  Kim W, Choi YH, Yoon KS, Cho DY, Pae CU, Woo JM. Tryptophan hydroxylase and serotonin transporter gene polymorphism does not affect the diagnosis, clinical features and treatment outcome of panic disorder in the Korean population. Prog. Neuropsychopharmacol. Biol. Psychiatry30(8),1413–1418 (2006).
    • 228  Stein MB, Seedat S, Gelernter J. Serotonin transporter gene promoter polymorphism predicts SSRI response in generalized social anxiety disorder. Psychopharmacology (Berl.)187(1),68–72 (2006).
    • 229  Lenze EJ, Goate AM, Nowotny P et al. Relation of serotonin transporter genetic variation to efficacy of escitalopram for generalized anxiety disorder in older adults. J. Clin. Psychopharmacol.30(6),672–677 (2010).
    • 230  Tot S, Erdal ME, Yazici K, Yazici AE, Metin O. T102C and -1438 G/A polymorphisms of the 5-HT2A receptor gene in Turkish patients with obsessive-compulsive disorder. Eur. Psychiatry18(5),249–254 (2003).
    • 231  Lohoff FW, Aquino TD, Narasimhan S, Multani PK, Etemad B, Rickels K. Serotonin receptor 2A (HTR2A) gene polymorphism predicts treatment response to venlafaxine XR in generalized anxiety disorder. Pharmacogenomics J. doi: 10.1038/tpj.2011.47 (2011) (Epub ahead of print).
    • 232  Lawford BR, Mc DYR, Noble EP et al. D2 dopamine receptor gene polymorphism. paroxetine and social functioning in posttraumatic stress disorder. Eur. Neuropsychopharmacol.13(5),313–320 (2003).
    • 233  Domschke K, Dannlowski U, Ohrmann P et al. Cannabinoid receptor 1 (CNR1) gene. impact on antidepressant-treatment response and emotion processing in major depression. Eur. Neuropsychopharmacol.18(10),751–759 (2008).
    • 234  Narasimhan S, Aquino TD, Hodge R, Rickels K, Lohoff FW. Association analysis between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and treatment response to venlafaxine XR in generalized anxiety disorder. Neurosci. Lett.503(3),200–202 (2011).
    • 235  Gould TD, Manji HK. Signaling networks in the pathophysiology and treatment of mood disorders. J. Psychosom. Res.53(2),687–697 (2002).
    • 236  Lin CN, Tsai SJ, Hong CJ. Association analysis of a functional G protein beta3 subunit gene polymorphism (C825T) in mood disorders. Neuropsychobiology44(3),118–121 (2001).
    • 237  Kunugi H, Kato T, Fukuda R, Tatsumi M, Sakai T, Nanko S. Association study of C825T polymorphism of the G-protein β3 subunit gene with schizophrenia and mood disorders. J. Neural. Transm.109(2),213–218 (2002).
    • 238  Goldberg JF, Truman CJ. Antidepressant-induced mania: an overview of current controversies. Bipolar Disord.5(6),407–420 (2003).
    • 239  Mundo E, Walker M, Cate T, Macciardi F, Kennedy JL. The role of serotonin transporter protein gene in antidepressant-induced mania in bipolar disorder: preliminary findings. Arch. Gen. Psychiatry58(6),539–544 (2001).
    • 240  Masoliver E, Menoyo A, Perez V et al. Serotonin transporter linked promoter (polymorphism) in the serotonin transporter gene may be associated with antidepressant-induced mania in bipolar disorder. Psychiatr. Genet.16(1),25–29 (2006).
    • 241  Ferreira AA, Neves FS, Da Rocha FF et al. The role of 5-HTTLPR polymorphism in antidepressant-associated mania in bipolar disorder. J. Affect. Disord.112(1–3),267–272 (2009).
    • 242  Rousseva A, Henry C, van den Bulke D et al. Antidepressant-induced mania, rapid cycling and the serotonin transporter gene polymorphism. Pharmacogenomics J.3(2),101–104 (2003).
    • 243  Serretti A, Artioli P, Zanardi R et al. Genetic features of antidepressant induced mania and hypo-mania in bipolar disorder. Psychopharmacology (Berl.)174(4),504–511 (2004).
    • 244  Baumer FM, Howe M, Gallelli K, Simeonova DI, Hallmayer J, Chang KD. A pilot study of antidepressant-induced mania in pediatric bipolar disorder: characteristics, risk factors, and the serotonin transporter gene. Biol. Psychiatry60(9),1005–1012 (2006).
    • 245  Daray FM, Thommi SB, Ghaemi SN. The pharmacogenetics of antidepressant-induced mania: a systematic review and meta-analysis. Bipolar Disord.12(7),702–706 (2010).
    • 246  Zai G, Mundo E, Strauss J, Wong GW, Kennedy JL. Brain-derived neurotrophic factor (BDNF) gene not associated with antidepressant-induced mania. Bipolar Disord.9(5),521–525 (2007).
    • 247  Frueh FW, Amur S, Mummaneni P et al. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy28(8),992–998 (2008).