We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A current update on ADHD pharmacogenomics

    Christian Kieling

    ADHD Program, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350-2201, Porto Alegre, RS, 90035-003, Brazil.

    ,
    Júlia P Genro

    Department of Genetics, Universidade Federal do Rio Grande do Sul, Brazil

    ,
    Mara H Hutz

    Department of Genetics, Universidade Federal do Rio Grande do Sul, Brazil

    &
    Luis Augusto Rohde

    † Author for correspondence

    ADHD Program, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350-2201, Porto Alegre, RS, 90035-003, Brazil.

    Published Online:https://doi.org/10.2217/pgs.10.28

    Pharmacological treatment for attention deficit hyperactivity disorder, although highly effective, presents a marked variability in clinical response, optimal dosage needed and tolerability. Clinical and neurobiological investigations have juxtaposed findings on both response to medication and etiologic factors, generating the hypothesis that genetic factors may underlie differences in treatment outcome. Over the last decade, research has focused on the catecholaminergic system to investigate a potential role of genotype on pharmacological effect. Despite an increasing number of associations reported (for methylphenidate, nine in 2005, 24 in 2008 and 52 reported in the current article), the identification of clinically relevant genetic predictors of treatment response remains a challenge. At present, additional studies are required to allow for a shift from a trial-and-error approach to a more rational pharmacologic regimen that takes into account the likelihood of treatment effectiveness at the individual level.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Goldman L, Genel M, Bezman R, Slanetz P: Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Council on Scientific Affairs, American Medical Association. JAMA279(14),1100–1107 (1998).
    • Kieling C, Goncalves R, Tannock R, Castellanos F: Neurobiology of attention deficit hyperactivity disorder. Child. Adolesc. Psychiatr. Clin. N. Am.17(2),285–307, viii (2008).
    • Stein M, McGough J: The pharmacogenomic era: promise for personalizing attention deficit hyperactivity disorder therapy. Child. Adolesc. Psychiatr. Clin. N. Am.17(2),475–490, xi–xii (2008).
    • Polanczyk G, Zeni C, Genro J, Roman T, Hutz M, Rohde L: Attention-deficit/hyperactivity disorder: advancing on pharmacogenomics. Pharmacogenomics6(3),225–234 (2005).
    • Vandenbergh D, Persico A, Hawkins A et al.: Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics14(4),1104–1106 (1992).
    • Gizer I, Ficks C, Waldman I: Candidate gene studies of ADHD: a meta-analytic review. Hum. Genet.126(1),51–90 (2009).
    • Winsberg B, Comings D: Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J. Am. Acad. Child. Adolesc. Psychiatry38(12),1474–1477 (1999).
    • Roman T, Szobot C, Martins S, Biederman J, Rohde L, Hutz M: Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics12(6),497–499 (2002).
    • Kirley A, Lowe N, Hawi Z et al.: Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am. J. Med. Genet. B. Neuropsychiatr. Genet.121B(1),50–54 (2003).
    • 10  Stein M, Waldman I, Sarampote C et al.: Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology30(7),1374–1382 (2005).
    • 11  van der Meulen E, Bakker S, Pauls D et al.: High sibling correlation on methylphenidate response but no association with DAT1-10R homozygosity in Dutch sibpairs with ADHD. J. Child. Psychol. Psychiatry46(10),1074–1080 (2005).
    • 12  Langley K, Turic D, Peirce T et al.: No support for association between the dopamine transporter (DAT1) gene and ADHD. Am. J. Med. Genet. B. Neuropsychiatr. Genet.139B(1),7–10 (2005).
    • 13  McGough J, McCracken J, Swanson J et al.: Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J. Am. Acad. Child. Adolesc. Psychiatry45(11),1314–1322 (2006).
    • 14  Zeni C, Guimarães A, Polanczyk G et al.: No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet.144B(3),391–394 (2007).
    • 15  Joober R, Grizenko N, Sengupta S et al.: Dopamine transporter 3´-UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology32(6),1370–1376 (2007).
    • 16  Tharoor H, Lobos E, Todd R, Reiersen A: Association of dopamine, serotonin, and nicotinic gene polymorphisms with methylphenidate response in ADHD. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(4),527–530 (2008).
    • 17  Kereszturi E, Tarnok Z, Bognar E et al.: Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(8),1431–1435 (2008).
    • 18  Purper-Ouakil D, Wohl M, Orejarena S et al.: Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(8),1425–1430 (2008).▪▪ Presents a meta-analysis of 475 subjects from previous reports, suggesting a significant association between the 10/10 genotype and methylphenidate (MPH) response.
    • 19  Gruber R, Joober R, Grizenko N, Leventhal B, Cook EJ, Stein M: Dopamine transporter genotype and stimulant side effect factors in youth diagnosed with attention-deficit/hyperactivity disorder. J. Child. Adolesc. Psychopharmacol.19(3),233–239 (2009).
    • 20  Leddy J, Waxmonsky J, Salis R et al.: Dopamine-related genotypes and the dose-response effect of methylphenidate on eating in attention-deficit/hyperactivity disorder youths. J. Child. Adolesc. Psychopharmacol.19(2),127–136 (2009).
    • 21  McGough J, McCracken J, Loo S et al.: A candidate gene analysis of methylphenidate response in attention-deficit/hyperactivity disorder. J. Am. Acad. Child. Adolesc. Psychiatry (2009) (Epub ahead of print).
    • 22  Mick E, Biederman J, Spencer T, Faraone S, Sklar P: Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. Am. J. Med. Genet. B. Neuropsychiatr. Genet.141B(8),890–894 (2006).
    • 23  Kooij J, Boonstra A, Vermeulen S et al.: Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(2),201–208 (2008).
    • 24  Rohde L, Roman T, Szobot C, Cunha R, Hutz M, Biederman J: Dopamine transporter gene, response to methylphenidate and cerebral blood flow in attention-deficit/hyperactivity disorder: a pilot study. Synapse48(2),87–89 (2003).
    • 25  Cheon K, Ryu Y, Kim J, Cho D: The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur. Neuropsychopharmacol.15(1),95–101 (2005).
    • 26  Loo S, Specter E, Smolen A, Hopfer C, Teale P, Reite M: Functional effects of the DAT1 polymorphism on EEG measures in ADHD. J. Am. Acad. Child. Adolesc. Psychiatry42(8),986–993 (2003).
    • 27  Bellgrove M, Hawi Z, Kirley A, Fitzgerald M, Gill M, Robertson I: Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacology30(12),2290–2297 (2005).
    • 28  Gilbert D, Wang Z, Sallee F et al.: Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain129(Pt 8),2038–2046 (2006).
    • 29  Oldenhof J, Vickery R, Anafi M et al.: SH3 binding domains in the dopamine D4 receptor. Biochemistry37(45),15726–15736 (1998).
    • 30  Gelernter J, Kennedy J, van Tol H, Civelli O, Kidd K: The D4 dopamine receptor (DRD4) maps to distal 11p close to HRAS. Genomics13(1),208–210 (1992).
    • 31  Tahir E, Yazgan Y, Cirakoglu B, Ozbay F, Waldman I, Asherson P: Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Mol. Psychiatry5(4),396–404 (2000).
    • 32  Seeger G, Schloss P, Schmidt M: Marker gene polymorphisms in hyperkinetic disorder – predictors of clinical response to treatment with methylphenidate? Neurosci. Lett.313(1–2),45–48 (2001).
    • 33  Hamarman S, Fossella J, Ulger C, Brimacombe M, Dermody J: Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorder: a pharmacogenetic study. J. Child. Adolesc. Psychopharmacol.14(4),564–574 (2004).
    • 34  Cheon K, Kim B, Cho S: Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology32(6),1377–1383 (2007).
    • 35  Hoehe M, Otterud B, Hsieh W et al.: Genetic mapping of adrenergic receptor genes in humans. J. Mol. Med.73(6),299–306 (1995).
    • 36  Polanczyk G, Zeni C, Genro J et al.: Association of the adrenergic a2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry64(2),218–224 (2007).▪ Presents the first evidence of a role for the ADRA2A gene on the effect of MPH on attentive symptoms of attention deficit–hyperactivity disorder.
    • 37  da Silva T, Pianca T, Roman T et al.: Adrenergic α2A receptor gene and response to methylphenidate in attention-deficit/hyperactivity disorder-predominantly inattentive type. J. Neural. Transm.115(2),341–345 (2008).
    • 38  Cheon K, Cho D, Koo M, Song D, Namkoong K: Association between homozygosity of a G allele of the α-2a-adrenergic receptor gene and methylphenidate response in Korean children and adolescents with attention-deficit/hyperactivity disorder. Biol. Psychiatry65(7),564–570 (2009).
    • 39  Arnsten A: Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs23(Suppl. 1),33–41 (2009).
    • 40  Stevenson J, Langley K, Pay H et al.: Attention deficit hyperactivity disorder with reading disabilities: preliminary genetic findings on the involvement of the ADRA2A gene. J. Child. Psychol. Psychiatry46(10),1081–1088 (2005).
    • 41  Keulers E, Hendriksen J, Feron F et al.: Methylphenidate improves reading performance in children with attention deficit hyperactivity disorder and comorbid dyslexia: an unblinded clinical trial. Eur. J. Paediatr. Neurol.11(1),21–28 (2007).
    • 42  Lotta T, Vidgren J, Tilgmann C et al.: Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry34(13),4202–4210 (1995).
    • 43  Cheon K, Jun J, Cho D: Association of the catechol-O-methyltransferase polymorphism with methylphenidate response in a classroom setting in children with attention-deficit hyperactivity disorder. Int. Clin. Psychopharmacol.23(5),291–298 (2008).
    • 44  Sengupta S, Grizenko N, Schmitz N et al.: COMT Val108/158Met polymorphism and the modulation of task-oriented behavior in children with ADHD. Neuropsychopharmacology33(13),3069–3077 (2008).
    • 45  Mick E, Neale B, Middleton F, McGough J, Faraone S: Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(8),1412–1418 (2008).
    • 46  Yang L, Wang Y, Li J, Faraone S: Association of norepinephrine transporter gene with methylphenidate response. J. Am. Acad. Child. Adolesc. Psychiatry43(9),1154–1158 (2004).
    • 47  Manor I, Laiba E, Eisenberg J et al.: Association between tryptophan hydroxylase 2, performance on a continuance performance test and response to methylphenidate in ADHD participants. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(8),1501–1508 (2008).
    • 48  Sinzig J, Döpfner M, Lehmkuhl G et al.: Long-acting methylphenidate has an effect on aggressive behavior in children with attention-deficit/hyperactivity disorder. J. Child. Adolesc. Psychopharmacol.17(4),421–432 (2007).
    • 49  Guimarães A, Zeni C, Polanczyk G et al.: MAOA is associated with methylphenidate improvement of oppositional symptoms in boys with attention deficit hyperactivity disorder. Int. J. Neuropsychopharmacol.12(5),709–714 (2009).
    • 50  Zhu H, Patrick K, Yuan H et al.: Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am. J. Hum. Genet.82(6),1241–1248 (2008).
    • 51  Nemoda Z, Angyal N, Tarnok Z, Gadoros J, Sasvari-Szekely M: Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology57(7–8),731–733 (2009).▪ Evaluates the association of MPH response with a gene related to its pharmacokinetics.
    • 52  Michelson D, Faries D, Wernicke J et al.: Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose–response study. Pediatrics108(5),E83 (2001).
    • 53  Michelson D, Read H, Ruff D, Witcher J, Zhang S, McCracken J: CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J. Am. Acad. Child. Adolesc. Psychiatry46(2),242–251 (2007).
    • 54  Trzepacz P, Williams D, Feldman P, Wrishko R, Witcher J, Buitelaar J: CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur. Neuropsychopharmacol.18(2),79–86 (2008).
    • 55  Ramoz N, Boni C, Downing A et al.: A haplotype of the norepinephrine transporter (Net) gene SLC6A2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology34(9),2135–2142 (2009).
    • 56  Altman D: Better reporting of randomised controlled trials: the CONSORT statement. BMJ313(7057),570–571 (1996).
    • 57  Everitt B, Wessely S: Clinical Trials in Psychiatry. John Wiley & Sons, NJ, USA (2008).
    • 58  Polanczyk G, Faraone S, Bau C et al.: The impact of individual and methodological factors in the variability of response to methylphenidate in ADHD pharmacogenetic studies from four different continents. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(8),1419–1424 (2008).▪▪ Meta-regression analysis that demonstrates the feasibility of multisite pharmacogenetic studies across different continents.
    • 59  Kieling C, Rohde L: Challenges and opportunities in ADHD pharmacogenomics. Pharmacogenomics9(9),1193–1194 (2008).