We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Practical recommendations for pharmacogenomics-based prescription: 2010 ESF–UB Conference on Pharmacogenetics and Pharmacogenomics

    Laurent Becquemont

    † Author for correspondence

    Univ Paris-Sud, Faculty of Medicine Paris-Sud, Pharmacology Department, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.

    ,
    Ana Alfirevic

    Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

    ,
    Ursula Amstutz

    Institute of Clinical Chemistry Inselspital, Bern University Hospital, Bern, Switzerland and Pharmaceutical Outcomes Programme, Child and Family Research Institute, University of British Columbia, Vancouver, Canada

    ,
    Hiltrud Brauch

    Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany

    ,
    Evelyne Jacqz-Aigrain

    Department of Pediatric Pharmacology and Pharmacogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France

    ,
    Pierre Laurent-Puig

    Paris Descartes University, Paris, France and Biochemistry Department, Assistance Publique Hôpitaux de Paris, Hôpital Pompidou, Paris, France

    ,
    Miguel A Molina

    Laboratorio de Oncología, Instituto Universitario USP Dexeus, Barcelona, Spain

    ,
    Mikko Niemi

    Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland

    ,
    Matthias Schwab

    Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany

    ,
    Andrew A Somogyi

    Faculty of Health Sciences, University of Adelaide, Discipline of Pharmacology, Adelaide, Australia

    ,
    Eric Thervet

    Department of Renal Transplantation, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France, Paris Descartes University, Paris, France

    ,
    Anke-Hilse Maitland-van der Zee

    Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences (UIPS), University of Utrecht, Utrecht, The Netherlands

    ,
    André BP van Kuilenburg

    Academic Medical Center, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands

    ,
    Ron HN van Schaik

    Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands

    ,
    Céline Verstuyft

    Univ Paris-Sud, Faculty of Medicine Paris-Sud, Pharmacology Department, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France

    ,
    Mia Wadelius

    Department of Medical Sciences, Clinical Pharmacology, Uppsala University, Uppsala, Sweden

    &
    Ann K Daly

    Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK

    Published Online:https://doi.org/10.2217/pgs.10.147

    The present article summarizes the discussions of the 3rd European Science Foundation–University of Barcelona (ESF–UB) Conference in Biomedicine on Pharmacogenetics and Pharmacogenomics, which was held in June 2010 in Spain. It was focused on practical applications in routine medical practice. We provide practical recommendations for ten different clinical situations, that have either been approved or not approved by regulatory agencies. We propose some comments that might accompany the results of these tests, indicating the best drug and doses to be prescribed. The discussed examples include KRAS, cetuximab, panitumumab, EGFR–gefitinib, CYP2D6–tamoxifen, TPMT–azathioprine–6-mercaptopurine, VKORC1/CYP2C9–warfarin, CYP2C19–clopidogrel, HLA-B*5701–abacavir, HLA-B*5701–flucloxacillin, SLCO1B1–statins and CYP3A5–tacrolimus. We hope that these practical recommendations will help physicians, biologists, scientists and other healthcare professionals to prescribe, perform and interpret these genetic tests.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Rosell R, Moran T, Queralt C et al.: Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med.361(10),958–967 (2009).
    • Maemondo M, Inoue A, Kobayashi K et al.: Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med.362(25),2380–2388 (2010).
    • Mok TS, Wu Yl, Thongprasert S et al.: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med.361(10),947–957 (2009).
    • Lynch TJ, Bell DW, Sordella R et al.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21),2129–2139 (2004).▪▪ First demonstration that gefitinib response depends on EGFR tumoral activating mutations.
    • Maheswaran S, Sequist LV, Nagrath S et al.: Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med.359(4),366–377 (2008).
    • Tsao MS, Sakurada A, Cutz JC et al.: Erlotinib in lung cancer – molecular and clinical predictors of outcome. N. Engl. J. Med.353(2),133–144 (2005).
    • Lievre A, Bachet JB, Le Corre D et al.: KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res.66(8),3992–3995 (2006).▪▪ First paper indicating a relationship between KRAS tumoral mutation and resistance to cetuximab.
    • Lievre A, Laurent-Puig P: Genetics: predictive value of KRAS mutations in chemoresistant CRC. Nat. Rev. Clin. Oncol.6(6),306–307 (2009).
    • Van Cutsem E, Kohne CH, Hitre E et al.: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med.360(14),1408–1417 (2009).
    • 10  Karapetis CS, Khambata-Ford S, Jonker DJ et al.: K-RAS mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359(17),1757–1765 (2008).▪▪ Clear demonstration that cetuximab response is only present in KRAS wild-type tumors.
    • 11  Amado RG, Wolf M, Peeters M et al.: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol.26(10),1626–1634 (2008).
    • 12  Schroth W, Antoniadou L, Fritz P et al.: Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol.25(33),5187–5193 (2007).
    • 13  Schroth W, Goetz MP, Hamann U et al.: Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA302(13),1429–1436 (2009).
    • 14  Jin Y, Desta Z, Stearns V et al.: CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl Cancer Inst.97(1),30–39 (2005).
    • 15  Bonanni B, Macis D, Maisonneuve P et al.: Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the italian tamoxifen trial. J. Clin. Oncol.24(22),3708–3709; author reply 3709 (2006).
    • 16  Lim HS, Ju Lee H, Seok Lee K, Sook Lee E, Jang Ij, Ro J: Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J. Clin. Oncol.25(25),3837–3845 (2007).
    • 17  Dehal SS, Kupfer D: CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res.57(16),3402–3406 (1997).
    • 18  Rebsamen MC, Desmeules J, Daali Y et al.: The amplichip CYP450 test: cytochrome P450 2D6 genotype assessment and phenotype prediction. Pharmacogenomics J.9(1),34–41 (2009).
    • 19  Van Kuilenburg AB, Meijer J, Mul AN et al.: Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency reveals large intragenic rearrangements of DPYD and a de novo interstitial deletion del(1)(p13.3p21.3). Hum. Genet.125(5–6),581–590 (2009).
    • 20  Amstutz U, Farese S, Aebi S, Largiader CR: Dihydropyrimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment. Pharmacogenomics10(6),931–944 (2009).
    • 21  Capitain O, Boisdron-Celle M, Poirier AL, Abadie-Lacourtoisie S, Morel A, Gamelin E: The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer. Pharmacogenomics J.8(4),256–267 (2008).
    • 22  Morel A, Boisdron-Celle M, Fey L et al.: Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol. Cancer Ther.5(11),2895–2904 (2006).
    • 23  Schwab M, Zanger UM, Marx C et al.: Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the german 5-FU toxicity study group. J. Clin. Oncol.26(13),2131–2138 (2008).▪▪ Very good paper with one of the largest patients cohort investigating different genetic risk factors of 5-fluorouracil related adverse drug reactions.
    • 24  Magne N, Etienne-Grimaldi MC, Cals L et al.: Dihydropyrimidine dehydrogenase activity and the IVS14+1G>A mutation in patients developing 5FU-related toxicity. Br. J. Clin. Pharmacol.64(2),237–240 (2007).
    • 25  Mcleod HL, Sargent DJ, Marsh S et al.: Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial n9741. J. Clin. Oncol.28(20),3227–3233 (2010).
    • 26  Boisdron-Celle M, Remaud G, Traore S et al.: 5-fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett.249(2),271–282 (2007).
    • 27  Teml A, Schaeffeler E, Schwab M: Pretreatment determination of TPMT – state of the art in clinical practice. Eur. J. Clin. Pharmacol.65(3),219–221 (2009).
    • 28  Schwab M, Schaffeler E, Marx C et al.: Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics12(6),429–436 (2002).
    • 29  Kaskas BA, Louis E, Hindorf U et al.: Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut52(1),140–142 (2003).
    • 30  Wadelius M, Chen L, Lindh J et al.: The largest prospective warfarin-treated cohort supports genetic forecasting. Blood113,784–792 (2009).
    • 31  International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB et al.: Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med.360(8),753–764 (2009).
    • 32  Rieder MJ, Reiner AP, Gage BF et al.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med.352(22),2285–2293 (2005).▪▪ Clear association of VKORC1 variants and warfarin dose requirements and the functionality of the variants.
    • 33  Schwartz U, Ritchie M, Bradford Y et al.: Genetic determinants of response to warfarin during initial anticoagulation. N. Engl. J. Med.358,999–1008 (2008).
    • 34  Aithal GP, Day CP, Kesteven PJ, Daly AK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet353(9154),717–719 (1999).▪ First demonstration that CYP2C9 polymorphisms are risk factors of bleeding in patients treated with warfarin.
    • 35  Van Schie RM, Wadelius MI, Kamali F et al.: Genotype-guided dosing of coumarin derivatives: The European Pharmacogenetics of Anticoagulant Therapy (EU-PACT) trial design. Pharmacogenomics10(10),1687–1695 (2009).
    • 36  Simon T, Verstuyft C, Mary-Krause M et al.: Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med.360(4),363–375 (2009).
    • 37  Mega J, Close S, Wiviott S et al.: Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med.360(4),354–362 (2009).
    • 38  Sibbing D, Stegherr J, Latz W et al.: CYP450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur. Heart J.30(8),916–922 (2009).
    • 39  Mallal S, Phillips E, Carosi G et al.: HlA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med.358,568–579 (2008).▪ Largest pharmacogenetic randomized clinical trial ever performed demontrating the usefulness of HLA-B*5701 screening.
    • 40  Daly A, Donaldson P, Bhatnagar P et al.: HlA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet.41,816–819 (2009).▪ Genome-wide association study that identified HLA-B*5701 as a risk factor of fluclixacillin mediated drug-induced liver injury.
    • 41  Niemi M: Transporter pharmacogenetics and statin toxicity. Clin. Pharmacol. Ther.87(1),130–133 (2010).▪ Excellent review on the topic.
    • 42  Search Collaborative Group, Link E, Parish S et al.: SLCO1B1 variants and statin-induced myopathy – a genomewide study. N. Engl. J. Med.359(8),789–799 (2008).▪▪ Genome-wide association study that clearly demonstrated that SLC01B1 is related to statin myopathy.
    • 43  Niemi M, Pasanen MK, Neuvonen PJ: SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther.80(4),356–366 (2006).
    • 44  Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M: SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics16(12),873–879 (2006).
    • 45  Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M: Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther.82(6),726–733 (2007).
    • 46  Thervet E, Loriot MA, Barbier S et al.: Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther.87(6),721–726 (2010).▪ Only randomized clinical trial demontrating the usefulness of CYP3A5 screening before tacrolimus dosing in renal transplantation.
    • 47  Zhao W, Elie V, Roussey G et al.: Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin. Pharmacol. Ther.86(6),609–618 (2009).
    • 101  European Science Foundation–University of Barcelona Conference in Biomedicine on Pharmacogenetics and Pharmacogenomics in Sant Feliu de Guixols, Spain, 6–10 June 2010: Practical Applications in Routine Medical Practice www.esf.org/index.php?id=6450
    • 102  Home Page of the Human CYP450 Allele Nomenclature Committee www.cypalleles.ki.se/
    • 103  Warfarin dosing www.warfarindosing.org
    • 104  Coumadin (warfarin) US FDA label www.accessdata.fda.gov/drugsatfda_docs/label/2010/009218s108lbl.pdf
    • 105  Table of valid genomic biomarkers in the context of approved drug labels www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm
    • 106  Plavix (clopidogrel) FDA label www.accessdata.fda.gov/drugsatfda_docs/label/2010/020839s042lbl.pdf