We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genetic risk factors for drug-induced long QT syndrome: findings from a large real-world case–control study

    Ana I Lopez-Medina

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    ,
    Alessandra M Campos-Staffico

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    ,
    Choudhary Anwar A Chahal

    Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA, USA

    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA

    Department of Cardiology, Barts Heart Centre, London, UK

    ,
    Isabella Volkers

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    ,
    Juliet P Jacoby

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    ,
    Omer Berenfeld

    Center for Arrhythmia Research, Departments of Internal Medicine – Cardiology, Biomedical Engineering, & Applied Physics, University of Michigan, Ann Arbor, MI, USA

    &
    Jasmine A Luzum

    *Author for correspondence: Tel.: +1 734 615 4851;

    E-mail Address: jluzum@med.umich.edu

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    Published Online:https://doi.org/10.2217/pgs-2023-0229

    Aim: Drug-induced long QT syndrome (diLQTS), an adverse effect of many drugs, can lead to sudden cardiac death. Candidate genetic variants in cardiac ion channels have been associated with diLQTS, but several limitations of previous studies hamper clinical utility. Materials & methods: Thus, the purpose of this study was to assess the associations of KCNE1-D85N, KCNE2-I57T and SCN5A-G615E with diLQTS in a large observational case–control study (6,083 self-reported white patients treated with 27 different high-risk QT-prolonging medications; 12.0% with diLQTS). Results:KCNE1-D85N significantly associated with diLQTS (adjusted odds ratio: 2.24 [95% CI: 1.35–3.58]; p = 0.001). Given low minor allele frequencies, the study had insufficient power to analyze KCNE2-I57T and SCN5A-G615E. Conclusion:KCNE1-D85N is a risk factor for diLQTS that should be considered in future clinical practice guidelines.

    Plain language summary

    Some medications can lead to a condition called drug-induced long QT syndrome (diLQTS), which can be a serious abnormal heart rhythm in some patients. In our research, we explored three specific changes in DNA related to the electrical function of the heart (KCNE1-D85N, KCNE2-I57T, SCN5A-G615E) and their link to diLQTS. Our study revealed a connection between KCNE1-D85N and diLQTS. This study emphasized the importance of including KCNE1-D85N in the medical guidelines to help identify patients at risk of diLQTS. We were unable to identify the connection of KCNE2-I57T and SCN5A-G615E with diLQTS, due to a low number of carriers in the study.

    References

    • 1. Roden DM. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 350(10), 1013–1022 (2004).
    • 2. Drew BJ, Ackerman MJ, Funk M et al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 55(9), 934–947 (2010).
    • 3. Desai M, Li L, Desta Z, Malik M, Flockhart D. Variability of heart rate correction methods for the QT interval. Br. J. Clin. Pharmacol. 55(6), 511–517 (2003).
    • 4. Luo S, Michler K, Johnston P, Macfarlane PW. A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J. Electrocardiol. (37 Suppl.), 81–90 (2004).
    • 5. Patel C, Yan GX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ. Arrhythm Electrophysiol. 3(4), 401–408 (2010).
    • 6. Goldenberg I, Horr S, Moss AJ et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol. 57(1), 51–59 (2011).
    • 7. Adler A, Novelli V, Amin AS et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 141(6), 418–428 (2020).
    • 8. Woosley RL, Heise CW, Gallo T, Woosley D, Romero KA. QTdrugs List,AZCERT, Inc. 1457 E. Desert Garden Dr., Tucson, AZ 85718 (2022). www.CredibleMeds.org
    • 9. Roden DM. A current understanding of drug-induced QT prolongation and its implications for anticancer therapy. Cardiovasc. Res. 115(5), 895–903 (2019).
    • 10. Del Camino D, Holmgren M, Liu Y, Yellen G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403(6767), 321–325 (2000).
    • 11. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc. Natl Acad. Sci. USA 97(22), 12329–12333 (2000).
    • 12. Wang W, Mackinnon R. Cryo-EM structure of the open human ether-à-go-go-related K(+) channel hERG. Cell 169(3), 422–430; e410 (2017).
    • 13. Pickham D, Helfenbein E, Shinn JA et al. High prevalence of corrected QT interval prolongation in acutely ill patients is associated with mortality: results of the QT in Practice (QTIP) Study. Crit. Care Med. 40(2), 394–399 (2012).
    • 14. Khatib R, Sabir FRN, Omari C, Pepper C, Tayebjee MH. Managing drug-induced QT prolongation in clinical practice. Postgrad Med. J. 97(1149), 452–458 (2021).
    • 15. Strauss DG, Vicente J, Johannesen L et al. Common genetic variant risk score is associated with drug-induced QT prolongation and torsade de pointes risk: a pilot study. Circulation 135(14), 1300–1310 (2017).
    • 16. Niemeijer MN, Van Den Berg ME, Eijgelsheim M, Rijnbeek PR, Stricker BH. Pharmacogenetics of drug-induced QT interval prolongation: an update. Drug Saf. 38(10), 855–867 (2015).
    • 17. Lopez-Medina AI, Chahal CaA, Luzum JA. The genetics of drug-induced QT prolongation: evaluating the evidence for pharmacodynamic variants. Pharmacogenomics 23(9), 543–557 (2022).
    • 18. Kannankeril PJ, Roden DM, Norris KJ, Whalen SP, George AL Jr, Murray KT. Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm 2(2), 134–140 (2005).
    • 19. Itoh H, Crotti L, Aiba T et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur. Heart J. 37(18), 1456–1464 (2016).
    • 20. Magavern EF, Kaski JC, Turner RM et al. The role of pharmacogenomics in contemporary cardiovascular therapy: a position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J. Cardiovasc. Pharmacother. 8(1), 85–99 (2022).
    • 21. Zawistowski M, Fritsche LG, Pandit A et al. The Michigan Genomics Initiative: a biobank linking genotypes and electronic clinical records in Michigan Medicine patients. Cell Genom. 3(2), 100257 (2023).
    • 22. Office of Research. University of Michigan. https://research.medicine.umich.edu/our-units/data-office-clinical-translational-research/self-serve-data-tools (Accessed 28 Jun 2021).
    • 23. Hanauer DA, Mei Q, Law J, Khanna R, Zheng K. Supporting information retrieval from electronic health records: a report of University of Michigan's nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). J. Biomed. Inform 55, 290–300 (2015).
    • 24. Wasey JO. Package “icd” version 3.3. Comorbidities from ICD-9 and ICD-10 codes, manipulation and validation (2018). www.rdocumentation.org/packages/icd/versions/3.3 (Accessed 8 February 2023).
    • 25. Woosley RL, Black K, Heise CW, Romero K. CredibleMeds.org: what does it offer? Trends Cardiovasc. Med. 28(2), 94–99 (2018).
    • 26. Micromedex® (electronic version). Merative, Ann Arbor, Michigan, USA. www.micromedexsolutions.com/ (Accessed 22 August 2022).
    • 27. Sorajja D, Bhakta MD, Scott LR, Altemose GT, Srivathsan K. Utilization of electrocardiographic P-wave duration for AV interval optimization in dual-chamber pacemakers. Indian Pacing Electrophysiol. J. 10(9), 383–392 (2010).
    • 28. Chiladakis J, Kalogeropoulos A, Zagkli F, Koutsogiannis N, Chouchoulis K, Alexopoulos D. Predicting torsade de pointes in acquired long QT syndrome: optimal identification of critical QT interval prolongation. Cardiology 122(1), 3–11 (2012).
    • 29. Fridericia LS. Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med. Scandin. 53(1), 469–486 (1920).
    • 30. Sagie A, Larson MG, Goldberg RJ, Bengtson JR, Levy D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am. J. Cardiol. 70(7), 797–801 (1992).
    • 31. Lester RM, Paglialunga S, Johnson IA. QT assessment in early drug development: the long and the short of it. Int. J. Mol. Sci. 20(6), 1324 (2019).
    • 32. Zajac GJM, Fritsche LG, Weinstock JS et al. Estimation of DNA contamination and its sources in genotyped samples. Genet. Epidemiol. 43(8), 980–995 (2019).
    • 33. Michigan Imputation Services. https://imputationserver.sph.umich.edu/index.html#! (Accessed 28 June 2022).
    • 34. Mccarthy S, Das S, Kretzschmar W et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48(10), 1279–1283 (2016).
    • 35. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics 26(22), 2867–2873 (2010).
    • 36. D'agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 17(19), 2265–2281 (1998).
    • 37. Tisdale JE, Jaynes HA, Kingery JR et al. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ. Cardiovasc Qual Outcomes 6(4), 479–487 (2013).
    • 38. Sesti F, Abbott GW, Wei J et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl Acad. Sci. USA 97(19), 10613–10618 (2000).
    • 39. Yang P, Kanki H, Drolet B et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105(16), 1943–1948 (2002).
    • 40. Itoh H, Sakaguchi T, Ding WG et al. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ. Arrhythm Electrophysiol. 2(5), 511–523 (2009).
    • 41. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation 109(15), 1834–1841 (2004).
    • 42. Sakata S, Kurata Y, Li P et al. Instability of KCNE1-D85N that causes long QT syndrome: stabilization by verapamil. Pacing Clin. Electrophysiol. 37(7), 853–863 (2014).
    • 43. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin. Electrophysiol. 21(5), 1029–1034 (1998).
    • 44. Paulussen AD, Gilissen RA, Armstrong M et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. (Berl) 82(3), 182–188 (2004).
    • 45. Kaab S, Crawford DC, Sinner MF et al. A large candidate gene survey identifies the KCNE1-D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ. Cardiovasc Genet 5(1), 91–99 (2012).
    • 46. Martinez-Matilla M, Blanco-Verea A, Santori M et al. Genetic susceptibility in pharmacodynamic and pharmacokinetic pathways underlying drug-induced arrhythmia and sudden unexplained deaths. Forensic Sci. Int. Genet 42, 203–212 (2019).
    • 47. Weeke P, Mosley JD, Hanna D et al. Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome. J. Am. Coll. Cardiol. 63(14), 1430–1437 (2014).
    • 48. Corponi F, Fabbri C, Boriani G et al. Corrected QT Interval Prolongation in Psychopharmacological Treatment and Its Modulation by Genetic Variation. Neuropsychobiology 77(2), 67–72 (2019).
    • 49. Spellmann I, Reinhard MA, Veverka D et al. QTc prolongation in short-term treatment of schizophrenia patients: effects of different antipsychotics and genetic factors. Eur. Arch. Psychiatry Clin. Neurosci. 268(4), 383–390 (2018).
    • 50. Behr ER, Ritchie MD, Tanaka T et al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLOS ONE 8(11), e78511 (2013).
    • 51. Avery CL, Sitlani CM, Arking DE et al. Drug-gene interactions and the search for missing heritability: a cross-sectional pharmacogenomics study of the QT interval. Pharmacogenomics J. 14(1), 6–13 (2014).
    • 52. Chevalier P, Rodriguez C, Bontemps L et al. Non-invasive testing of acquired long QT syndrome: evidence for multiple arrhythmogenic substrates. Cardiovasc. Res. 50(2), 386–398 (2001).
    • 53. Makita N, Horie M, Nakamura T et al. Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 106(10), 1269–1274 (2002).
    • 54. Aberg K, Adkins DE, Liu Y et al. Genome-wide association study of antipsychotic-induced QTc interval prolongation. Pharmacogenomics J. 12(2), 165–172 (2012).
    • 55. Zerdazi EH, Vorspan F, Marees AT et al. QT length during methadone maintenance treatment: gene x dose interaction. Fundam. Clin. Pharmacol. 33(1), 96–106 (2019).
    • 56. Roberts JD, Krahn AD, Ackerman MJ et al. Loss-of-Function KCNE2 Variants: True Monogenic Culprits of Long-QT Syndrome or Proarrhythmic Variants Requiring Secondary Provocation? Circ. Arrhythm Electrophysiol. 10(8), e005282 (2017).
    • 57. Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol. Rev. 94(2), 609–653 (2014).
    • 58. Itoh H, Crotti L, Aiba T et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur. Heart J. 37(18), 1456–1464 (2016).
    • 59. Mccrossan ZA, Roepke TK, Lewis A, Panaghie G, Abbott GW. Regulation of the Kv2.1 potassium channel by MinK and MiRP1. J. Membr. Biol. 228(1), 1–14 (2009).
    • 60. Abbott GW, Sesti F, Splawski I et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97(2), 175–187 (1999).
    • 61. Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J. 19(23), 6326–6330 (2000).
    • 62. Sanchez O, Campuzano O, Fernández-Falgueras A et al. Natural and undetermined sudden death: value of post-mortem genetic investigation. PLOS ONE 11(12), e0167358 (2016).
    • 63. Aronsen JM, Swift F, Sejersted OM. Cardiac sodium transport and excitation-contraction coupling. J. Mol. Cell. Cardiol. 61, 11–19 (2013).
    • 64. Albert CM, Nam EG, Rimm EB et al. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 117(1), 16–23 (2008).
    • 65. Ramirez AH, Shaffer CM, Delaney JT et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 13(4), 325–329 (2013).
    • 66. Napolitano C, Schwartz PJ, Brown AM et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J. Cardiovasc Electrophysiol. 11(6), 691–696 (2000).
    • 67. Splawski I, Timothy KW, Tateyama M et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297(5585), 1333–1336 (2002).
    • 68. Watanabe J, Fukui N, Suzuki Y et al. Effect of GWAS-identified genetic variants on maximum QT interval in patients with schizophrenia receiving antipsychotic agents: a 24-hour Holter ECG study. J. Clin. Psychopharmacol. 37(4), 452–455 (2017).
    • 69. Ramsey LB, Bruun GH, Yang W et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 22(1), 1–8 (2012).
    • 70. Luzum JA, Petry N, Taylor AK, Van Driest SL, Dunnenberger HM, Cavallari LH. Moving pharmacogenetics into practice: it's all about the evidence! Clin. Pharmacol. Ther. 110(3), 649–661 (2021).
    • 71. Swen JJ, Van Der Wouden CH, Manson LE et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 401(10374), 347–356 (2023).
    • 72. Dahlberg P, Diamant UB, Gilljam T, Rydberg A, Bergfeldt L. QT correction using Bazett's formula remains preferable in long QT syndrome type 1 and 2. Ann. Noninv. Electrocardiol. 26(1), e12804 (2021).
    • 73. Vandenberk B, Vandael E, Robyns T et al. Which QT correction formulae to use for QT monitoring? J. Am. Heart Assoc. 5(6), e004252 (2016).