We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Assessing the utility of measurement methods applied in economic evaluations of pharmacogenomics applications

    Vasileios Fragoulakis

    The Golden Helix Foundation, London, SE1 8RT, UK

    ,
    Margarita-Ioanna Koufaki

    University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, 26504, Rio, Patras, Greece

    ,
    Korina Tzerefou

    University of Piraeus, Economics Department, 18534, Piraeus, Greece

    ,
    Konstantinos Koufou

    The Golden Helix Foundation, London, SE1 8RT, UK

    ,
    George P Patrinos

    University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, 26504, Rio, Patras, Greece

    United Arab Emirates University, College of Medicine & Health Sciences, Department of Genetics & Genomics, P.O. Box. 15551, Al-Ain, Abu Dhabi, United Arab Emirates

    United Arab Emirates University, Zayed Center for Health Sciences, P.O. Box. 15551, Al-Ain, Abu Dhabi, United Arab Emirates

    &
    Christina Mitropoulou

    *Author for correspondence: Tel.: 0030 698 321 0644;

    E-mail Address: c.mitropoulou@goldenhelix.org

    The Golden Helix Foundation, London, SE1 8RT, UK

    United Arab Emirates University, Zayed Center for Health Sciences, P.O. Box. 15551, Al-Ain, Abu Dhabi, United Arab Emirates

    Published Online:https://doi.org/10.2217/pgs-2023-0221

    An increasing number of economic evaluations are published annually investigating the economic effectiveness of pharmacogenomic (PGx) testing. This work was designed to provide a comprehensive summary of the available utility methods used in cost–effectiveness/cost–utility analysis studies of PGx interventions. A comprehensive review was conducted to identify economic analysis studies using a utility valuation method for PGx testing. A total of 82 studies met the inclusion criteria. A majority of studies were from the USA and used the EuroQol-5D questionnaire, as the utility valuation method. Cardiovascular disorders was the most studied therapeutic area while discrete-choice studies mainly focused on patients' willingness to undergo PGx testing. Future research in applying other methodologies in PGx economic evaluation studies would improve the current research environment and provide better results.

    References

    • 1. Klein ME, Parvez MM, Shin JG. Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J. Pharm. Sci. 106(9), 2368–2379 (2017).
    • 2. Pandi MT, Koromina M, Vonitsanos G, van der Spek PJ, Patrinos GP, Mitropoulou C. Development of an optimized and generic cost-utility model for analyzing genome-guided treatment data. Pharmacol. Res. 178, 106187 (2022).
    • 3. Chenoweth MJ, Giacomini KM, Pirmohamed M et al. Global pharmacogenomics within precision medicine: challenges and opportunities. Clin. Pharmacol. Ther. 107(1), 57–61 (2020).
    • 4. Fragoulakis V, Mitropoulou C, Williams M, Patrinos GP. Economic Evaluation in Genomic Medicine. ScienceDirect, UK (2015).
    • 5. Salomon JA. Techniques for valuing health states. Elsevier eBooks, 454–458 (2014).
    • 6. Grosse SD, Wordsworth S, Payne K. Economic methods for valuing the outcomes of genetic testing: beyond cost-effectiveness analysis. Genet. Med. 10(9), 648–654 (2008).
    • 7. Brazier J, Ratcliffe J. Measuring and Valuing Health Benefits for Economic Evaluation (2nd Edition 2016; online edition). Oxford Academic, Oxford, UK (2016).
    • 8. Hickey A, Barker M, McGee H, O'Boyle C. Measuring health-related quality of life in older patient populations: a review of current approaches. Pharmacoeconomics 23(10), 971–993 (2005).
    • 9. Rowen D, Azzabi Zouraq I, Chevrou-Severac H, van Hout B. International regulations and recommendations for utility data for health technology assessment. Pharmacoeconomics 35(Suppl. 1), 11–19 (2017).
    • 10. Fragoulakis V, Mitropoulou C, Williams MS, Patrinos GP. Economic Evaluation in Genomic Medicine. Elsevier/Academic Press, UK, 37–63 (2015).
    • 11. Attema AE, Edelaar-Peeters Y, Versteegh MM, Stolk EA. Time trade-off: one methodology, different methods. Eur. J. Health Econ. 14(Suppl. 1),S53–S64 (2013).
    • 12. Clark MD, Determann D, Petrou S, Moro D, de Bekker-Grob EW. Discrete choice experiments in health economics: a review of the literature. Pharmacoeconomics 32(9), 883–902 (2014).
    • 13. Soekhai V, de Bekker-Grob EW, Ellis AR, Vass CM. Discrete choice experiments in health economics: past, present and future. Pharmacoeconomics 37(2), 201–226 (2019).
    • 14. Zoratti MJ, Pickard AS, Stalmeier PFM et al. Evaluating the conduct and application of health utility studies: a review of critical appraisal tools and reporting checklists. Eur. J. Health Econ. 22(5), 723–733 (2021).
    • 15. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J. 17(5), 395–402 (2017).
    • 16. Deverka PA, Vernon J, McLeod HL. Economic opportunities and challenges for pharmacogenomics. Annu. Rev. Pharmacol. Toxicol. 50, 423–437 (2010).
    • 17. Koufaki MI, Karamperis K, Vitsa P et al. Adoption of pharmacogenomic testing: a marketing perspective. Front. Pharmacol. 12, 72431 (2021).
    • 18. Charbonneau DH. The Cochrane Library. J. Med. Libr. Assoc. 93(3), 409–410 (2005).
    • 19. Misra DP, Ravindran V. An overview of the functionalities of PubMed. J. Royal College Physicians Edinburgh 52(1), 8–9 (2022).
    • 20. NHS Centre for Reviews and Dissemination. The NHS Economic Evaluation Database (NHS EED) York: University of York. Effectiveness Matters 6(1). 2002 Effectiveness Matters. York: University of York 6(1), (2002). www.crd.york.ac.uk/CRDWeb/ShowRecord.asp?ID=32002000739
    • 21. Alagoz O, Durham D, Kasirajan K. Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions. Pharmacogenomics J. 16(2), 129–136 (2016).
    • 22. Banerjee S, Kumar A, Lopez N et al. Cost-effectiveness analysis of genetic testing and tailored first-line therapy for patients with metastatic gastrointestinal stromal tumors. JAMA Netw. Open 3(9), e2013565 (2020).
    • 23. Bereza BG, Coyle D, So DY et al. Stated preferences for attributes of a CYP2C19 pharmacogenetic test among the general population presented with a hypothetical acute coronary syndrome scenario. Clinicoecon. Outcomes Res. 12, 167–175 (2020).
    • 24. Berm EJ, Hak E, Postma M et al. Effects and cost-effectiveness of pharmacogenetic screening for CYP2D6 among older adults starting therapy with nortriptyline or venlafaxine: study protocol for a pragmatic randomized controlled trial (CYSCEtrial). Trials 16, 37 (2015).
    • 25. Biltaji E, Walker B, Au T et al. Can cost-effectiveness analysis inform genotype-guided aspirin use for primary colorectal cancer prevention? Cancer Epidemiol. Biomarkers Prev. 30(6), 1106–1113 (2021).
    • 26. Blázquez-Pérez A, San Miguel R, Mar J. Cost-effectiveness analysis of triple therapy with protease inhibitors in treatment-naive hepatitis C patients. Pharmacoeconomics 31(10), 919–931 (2013).
    • 27. Brooks GA, Tapp S, Daly AT, Busam JA, Tosteson ANA. Cost-effectiveness of DPYD genotyping prior to fluoropyrimidine-based adjuvant chemotherapy for colon cancer. Clinical Colorectal Cancer 21(3), e189–e195 (2022).
    • 28. Cai Z, Cai D, Wang R, Wang H, Yu Z, Gao F. Cost-effectiveness of CYP2C19 genotyping to guide antiplatelet therapy for acute minor stroke and high-risk transient ischemic attack. Sci. Rep. 11(1), 7383 (2021).
    • 29. Carta A, Del Zompo M, Meloni A et al. Cost-utility analysis of pharmacogenetic testing based on CYP2C19 or CYP2D6 in major depressive disorder: assessing the drivers of different cost-effectiveness levels from an Italian societal perspective. Clin. Drug Investig. 42(9), 733–746 (2022).
    • 30. Chan SL, Wen Low JJ, Lim YW et al. Willingness-to-pay and preferences for warfarin pharmacogenetic testing in Chinese warfarin patients and the Chinese general public. Per. Med. 10(2), 127–137 (2013).
    • 31. Chen Z, Liew D, Kwan P. Real-world cost-effectiveness of pharmacogenetic screening for epilepsy treatment. Neurology 86(12), 1086–1094 (2016).
    • 32. Chong HY, Saokaew S, Dumrongprat K et al. Cost-effectiveness analysis of pharmacogenetic-guided warfarin dosing in Thailand. Thromb. Res. 134(6), 1278–1284 (2014).
    • 33. Claassens DMF, van Dorst PWM, Vos GJA et al. Cost effectiveness of a CYP2C19 genotype-guided strategy in patients with acute myocardial infarction: results from the POPular Genetics trial. Am. J. Cardiovasc. Drugs 22(2), 195–206 (2022).
    • 34. Crespin DJ, Federspiel JJ, Biddle AK, Jonas DE, Rossi JS. Ticagrelor versus genotype-driven antiplatelet therapy for secondary prevention after acute coronary syndrome: a cost-effectiveness analysis. Value Health 14(4), 483–491 (2011).
    • 35. Dong OM, Friede KA, Chanfreau-Coffinier C, Voora D. Cost-effectiveness of CYP2C19-guided P2Y12 inhibitors in veterans undergoing percutaneous coronary intervention for acute coronary syndromes. Eur. Heart J. Qual. Care Clin. Outcomes 9(3), 249–257 (2023).
    • 36. Dong OM, Wheeler SB, Cruden G et al. Cost-effectiveness of multigene pharmacogenetic testing in patients with acute coronary syndrome after percutaneous coronary intervention. Value Health 23(1), 61–73 (2020).
    • 37. Dong D, Tan-Koi WC, Teng GG, Finkelstein E, Sung C. Cost-effectiveness analysis of genotyping for HLA-B*5801 and an enhanced safety program in gout patients starting allopurinol in Singapore. Pharmacogenomics 16(16), 1781–1793 (2015).
    • 38. Dong D, Ozdemir S, Mong Bee Y, Toh SA, Bilger M, Finkelstein E. Measuring high-risk patients' preferences for pharmacogenetic testing to reduce severe adverse drug reaction: a discrete choice experiment. Value Health 19(6), 767–775 (2016).
    • 39. Duong KN, Nguyen DV, Chaiyakunapruk N, Nelson RE, Malone DC. Cost-effectiveness of HLA-B*58:01 testing to prevent Stevens-Johnson syndrome/toxic epidermal necrolysis in Vietnam. Pharmacogenomics 24(13), 713–724 (2023).
    • 40. Fariman SA, Jahangard Rafsanjani Z, Hasanzad M, Niksalehi K, Nikfar S. Upfront DPYD genotype-guided treatment for fluoropyrimidine-based chemotherapy in advanced and metastatic colorectal cancer: a cost-effectiveness analysis. Value Health Reg. Issues 37, 71–80 (2023).
    • 41. Fragoulakis V, Roncato R, Bignucolo A et al. Cost-utility analysis and cross-country comparison of pharmacogenomics-guided treatment in colorectal cancer patients participating in the U-PGx PREPARE study. Pharmacol. Res. 197, 106949 (2023).
    • 42. Fragoulakis V, Roncato R, Fratte CD et al. Estimating the effectiveness of DPYD genotyping in Italian individuals suffering from cancer based on the cost of chemotherapy-induced toxicity. Am. J. Hum. Genet. 104(6), 1158–1168 (2019).
    • 43. Fragoulakis V, Bartsakoulia M, Díaz-Villamarín X et al. Cost-effectiveness analysis of pharmacogenomics-guided clopidogrel treatment in Spanish patients undergoing percutaneous coronary intervention. Pharmacogenomics J. 19(5), 438–445 (2019).
    • 44. Fu Y, Zhang XY, Qin SB. Cost-effectiveness of CYP2C19 LOF-guided antiplatelet therapy in Chinese patients with acute coronary syndrome. Pharmacogenomics 21(1), 33–42 (2020).
    • 45. Girardin FR, Poncet A, Perrier A. Cost-effectiveness of HLA-DQB1/HLA-B pharmacogenetic-guided treatment and blood monitoring in US patients taking clozapine. Pharmacogenomics J. 19(2), 211–218 (2019).
    • 46. Gordon LG, Elliott TM, Bennett C, Hollway G, Waddell N, Vadlamudi L. Early cost-utility analysis of genetically guided therapy for patients with drug-resistant epilepsy. Epilepsia 63(12), 3111–3121 (2022).
    • 47. Groessl EJ, Tally SR, Hillery N, Maciel A, Garces JA. Cost-effectiveness of a pharmacogenetic test to guide treatment for major depressive disorder. J. Manag. Care Spec. Pharm. 24(8), 726–734 (2018).
    • 48. Hafeez A, Cipriano LE, Kim RB et al. Cost-effectiveness analysis of pharmacogenomics (PGx)-based warfarin, apixaban, and rivaroxaban versus standard warfarin for the management of atrial fibrillation in Ontario, Canada. Pharmacoeconomics 22(1), 69–90 (2024).
    • 49. Hornberger J, Li Q, Quinn B. Cost-effectiveness of combinatorial pharmacogenomic testing for treatment-resistant major depressive disorder patients. Am. J. Manag. Care 21(6), e357–e365 (2015).
    • 50. Jiang M, You JH. CYP2C19 LOF and GOF-guided antiplatelet therapy in patients with acute coronary syndrome: a cost-effectiveness analysis. Cardiovasc. Drugs Ther. 31(1), 39–49 (2017).
    • 51. Jiang M, You JH. Cost-effectiveness analysis of personalized antiplatelet therapy in patients with acute coronary syndrome. Pharmacogenomics 17(7), 701–713 (2016).
    • 52. Jutkowitz E, Dubreuil M, Lu N, Kuntz KM, Choi HK. The cost-effectiveness of HLA-B*5801 screening to guide initial urate-lowering therapy for gout in the United States. Semin. Arthritis Rheum. 46(5), 594–600 (2017).
    • 53. Kauf TL, Farkouh RA, Earnshaw SR, Watson ME, Maroudas P, Chambers MG. Economic efficiency of genetic screening to inform the use of abacavir sulfate in the treatment of HIV. Pharmacoeconomics 28(11), 1025–1039 (2010).
    • 54. Kazi DS, Garber AM, Shah RU et al. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann. Intern. Med. 160(4), 221–232 (2014).
    • 55. Ke CH, Chung WH, Wen YH et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J. Rheumatol. 44(6), 835–843 (2017).
    • 56. Kim JH, Tan DS, Chan MY. Cost-effectiveness of CYP2C19-guided antiplatelet therapy for acute coronary syndromes in Singapore. Pharmacogenomics J. 21(2), 243–250 (2021).
    • 57. Kim K, Touchette DR, Cavallari LH, Ardati AK, DiDomenico RJ. Cost-effectiveness of strategies to personalize the selection of P2Y12 inhibitors in patients with acute coronary syndrome. Cardiovasc. Drugs Ther. 33(5), 533–546 (2019).
    • 58. Kim DJ, Kim HS, Oh M, Kim EY, Shin JG. Cost effectiveness of genotype-guided warfarin dosing in patients with mechanical heart valve replacement under the fee-for-service system. Appl. Health Econ. Health Policy 15(5), 657–667 (2017).
    • 59. Koufaki MI, Fragoulakis V, Díaz-Villamarín X et al. Economic evaluation of pharmacogenomic-guided antiplatelet treatment in Spanish patients suffering from acute coronary syndrome participating in the U-PGx PREPARE study. Hum. Genomics 17(1), 51 (2023).
    • 60. Lala A, Berger JS, Sharma G et al. Genetic testing in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a cost-effectiveness analysis. J. Thromb. Haemost. 11(1), 81–91 (2013).
    • 61. Limdi NA, Cavallari LH, Lee CR et al. Cost-effectiveness of CYP2C19-guided antiplatelet therapy in patients with acute coronary syndrome and percutaneous coronary intervention informed by real-world data. Pharmacogenomics J. 20(5), 724–735 (2020).
    • 62. Martes-Martinez C, Méndez-Sepúlveda C, Millán-Molina J et al. Cost-utility study of warfarin genotyping in the VACHS affiliated anticoagulation clinic of Puerto Rico. P R Health Sci. J. 36(3), 165–172 (2017).
    • 63. Mitchell D, Guertin JR, Iliza AC, Fanton-Aita F, LeLorier J. Economic evaluation of a pharmacogenomics test for statin-induced myopathy in cardiovascular high-risk patients initiating a statin. Mol. Diag. Ther. 21(1), 95–105 (2017).
    • 64. Mitchell D, Guertin JR, Dubois A et al. A discrete event simulation model to assess the economic value of a hypothetical pharmacogenomics test for statin-induced myopathy in patients initiating a statin in secondary cardiovascular prevention. Mol. Diag. Ther. 22(2), 241–254 (2018).
    • 65. Mitropoulou C, Fragoulakis V, Bozina N et al. Economic evaluation of pharmacogenomic-guided warfarin treatment for elderly Croatian atrial fibrillation patients with ischemic stroke. Pharmacogenomics 16(2), 137–148 (2015).
    • 66. Moretti ME, Lato DF, Berger H et al. A cost-effectiveness analysis of maternal CYP2D6 genetic testing to guide treatment for postpartum pain and avert infant adverse events. Pharmacogenomics J. 18(3), 391–397 (2017).
    • 67. Narasimhalu K, Ang YK, Tan DSY, De Silva DA, Tan KB. Cost effectiveness of genotype-guided antiplatelet therapy in Asian ischemic stroke patients: ticagrelor as an alternative to clopidogrel in patients with CYP2C19 loss of function mutations. Clin. Drug Investig. 40(11), 1063–1070 (2020).
    • 68. Ninomiya K, Saito T, Okochi T et al. Cost effectiveness of pharmacogenetic-guided clozapine administration based on risk of HLA variants in Japan and the UK. Transl. Psychiatry 11(1), 362 (2021).
    • 69. Ninomiya K, Saito T, Ikeda M, Iwata N, Girardin FR. Pharmacogenomic-guided clozapine administration based on HLA-DQB1, HLA-B and SLCO1B3-SLCO1B7 variants: an effectiveness and cost-effectiveness analysis. Front. Pharmacol. 13, 1016669 (2022).
    • 70. Nshimyumukiza L, Duplantie J, Gagnon M et al. Dabigatran versus warfarin under standard or pharmacogenetic-guided management for the prevention of stroke and systemic thromboembolism in patients with atrial fibrillation: a cost/utility analysis using an analytic decision model. Thrombosis J. 11, 14 (2013).
    • 71. Panattoni L, Brown PM, Te Ao B, Webster M, Gladding P. The cost effectiveness of genetic testing for CYP2C19 variants to guide thienopyridine treatment in patients with acute coronary syndromes: a New Zealand evaluation. Pharmacoeconomics 30(11), 1067–1084 (2012).
    • 72. Patel V, Lin FJ, Ojo O, Rao S, Yu S, Zhan L et al. Cost-utility analysis of genotype-guided antiplatelet therapy in patients with moderate-to-high risk acute coronary syndrome and planned percutaneous coronary intervention. Pharm. Pract. 12(3), 438 (2014).
    • 73. Payne K, Fargher EA, Roberts SA et al. Valuing pharmacogenetic testing services: a comparison of patients' and health care professionals' preferences. Value Health 14(1), 121–134 (2011).
    • 74. Pink J, Pirmohamed M, Lane S, Hughes DA. Cost-effectiveness of pharmacogenetics-guided warfarin therapy vs. alternative anticoagulation in atrial fibrillation. Clin. Pharmacol. Ther. 95(2), 199–207 (2014).
    • 75. Plumpton CO, Alfirevic A, Pirmohamed M, Hughes DA. Cost effectiveness analysis of HLA-B*58:01 genotyping prior to initiation of allopurinol for gout. Rheumatology (Oxford) 56(10), 1729–1739 (2017).
    • 76. Plumpton CO, Yip VL, Alfirevic A, Marson AG, Pirmohamed M, Hughes DA. Cost-effectiveness of screening for HLA-A*31:01 prior to initiation of carbamazepine in epilepsy. Epilepsia 56(4), 556–563 (2015).
    • 77. Plumpton CO, Pirmohamed M, Hughes DA. Cost-effectiveness of panel tests for multiple pharmacogenes associated with adverse drug reactions: an evaluation framework. Clin. Pharmacol. Ther. 105(6), 1429–1438 (2019).
    • 78. Powell G, Holmes EA, Plumpton CO et al. Pharmacogenetic testing prior to carbamazepine treatment of epilepsy: patients' and physicians' preferences for testing and service delivery. Br. J. Clin. Pharmacol. 80(5), 1149–1159 (2015).
    • 79. Rattanavipapong W, Koopitakkajorn T, Praditsitthikorn N, Mahasirimongkol S, Teerawattananon Y. Economic evaluation of HLA-B*15:02 screening for carbamazepine-induced severe adverse drug reactions in Thailand. Epilepsia 54(9), 1628–1638 (2013).
    • 80. Rens NE, Uyl-de Groot CA, Goldhaber-Fiebert JD, Croda J, Andrews JR. Cost-effectiveness of a pharmacogenomic test for stratified isoniazid dosing in treatment of active tuberculosis. Clin. Infectious Dis. 71(12), 3136–3143 (2020).
    • 81. Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLOS One 9(4), e94294 (2014).
    • 82. Schackman BR, Haas DW, Park SS, Li XC, Freedberg KA. Cost-effectiveness of CYP2B6 genotyping to optimize efavirenz dosing in HIV clinical practice. Pharmacogenomics 16(18), 2007–2018 (2015).
    • 83. Sluiter RL, Kievit W, van der Wilt GJ et al. Cost-effectiveness analysis of genotype-guided treatment allocation in patients with alcohol use disorders using naltrexone or acamprosate, using a modeling approach. Eur. Addict. Res. 24(5), 245–254 (2018).
    • 84. Sluiter RL, Janzing J, Van Der Wilt GJ, Kievit W, Teichert M. An economic model of the cost-utility of pre-emptive genetic testing to support pharmacotherapy in patients with major depression in primary care. Pharmacogenomics J. 19(5), 480–489 (2019).
    • 85. Sorich MJ, Horowitz JD, Sorich W et al. Cost-effectiveness of using CYP2C19 genotype to guide selection of clopidogrel or ticagrelor in Australia. Pharmacogenomics 14(16), 2013–2021 (2013).
    • 86. Tanner JA, Davies PE, Overall CC et al. Cost-effectiveness of combinatorial pharmacogenomic testing for depression from the Canadian public payer perspective. Pharmacogenomics 21(8), 521–531 (2020).
    • 87. Teng GG, Tan-Koi WC, Dong D, Sung C. Is HLA-B*58:01 genotyping cost effective in guiding allopurinol use in gout patients with chronic kidney disease? Pharmacogenomics 21(4), 279–291 (2020).
    • 88. Thompson AJ, Newman WG, Elliott RA et al. The cost-effectiveness of a pharmacogenetic test: a trial-based evaluation of TPMT genotyping for azathioprine. Value Health 17(1), 22–33 (2014).
    • 89. Turongkaravee S, Praditsitthikorn N, Ngamprasertchai T et al. Economic evaluation of multiple-pharmacogenes testing for the prevention of adverse drug reactions in people living with HIV. Clinicoecon. Outcomes Res. 14, 447–463 (2022).
    • 90. Verhoef TI, Redekop WK, Langenskiold S et al. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden. Pharmacogenomics J. 16(5), 478–484 (2016).
    • 91. Verhoef TI, Redekop WK, Veenstra DL. Cost-effectiveness of pharmacogenetic-guided dosing of phenprocoumon in atrial fibrillation. Pharmacogenomics 14(8), 869–883 (2013).
    • 92. Wang Y, Yan BP, Liew D, Lee VWY. Cost-effectiveness of cytochrome P450 2C19 *2 genotype-guided selection of clopidogrel or ticagrelor in Chinese patients with acute coronary syndrome. Pharmacogenomics J. 18(1), 113–120 (2018).
    • 93. Wee JW, Png WY, Wong XY et al. Measuring preferences for CYP2C19 genotyping in patients with acute coronary syndrome–a discrete choice experiment. Future Cardiol. 16(6), 663–674 (2020).
    • 94. Wei X, Sun H, Zhuang J et al. Cost-effectiveness analysis of CYP2D6*10 pharmacogenetic testing to guide the adjuvant endocrine therapy for postmenopausal women with estrogen receptor positive early breast cancer in China. Clin. Drug Investig. 40(1), 25–32 (2020).
    • 95. Wei X, Cai J, Zhuang J et al. CYP2D6*10 pharmacogenetic-guided SERM could be a cost-effective strategy in Chinese patients with hormone receptor-positive breast cancer. Pharmacogenomics 21(1), 43–53 (2020).
    • 96. Wei X, Cai J, Sun H et al. Cost-effectiveness analysis of UGT1A1*6/*28 genotyping for preventing FOLFIRI-induced severe neutropenia in Chinese colorectal cancer patients. Pharmacogenomics 20(4), 241–249 (2019).
    • 97. You JH. Pharmacogenetic-guided selection of warfarin versus novel oral anticoagulants for stroke prevention in patients with atrial fibrillation: a cost-effectiveness analysis. Pharmacogenet. Genomics 24(1), 6–14 (2014).
    • 98. You JH, Tsui KK, Wong RS, Cheng G. Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PLOS One 7(6), (2012).
    • 99. Yuliwulandari R, Shin JG, Kristin E et al. Cost-effectiveness analysis of genotyping for HLA-B*15:02 in Indonesian patients with epilepsy using a generic model. Pharmacogenomics J. 21(4), 476–483 (2021).
    • 100. Zhu Y, Moriarty JP, Swanson KM et al. A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: preemptive, reactive, or none? Genet. Med. 23(3), 461–470 (2021).
    • 101. Zhu Y, Swanson KM, Rojas RL et al. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet. Med. 22(3), 475–486 (2022).
    • 102. Morris SA, Alsaidi AT Verbyla A et al. Cost effectiveness of pharmacogenetic testing for drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines: a systematic review. Clin. Pharmacol. Ther. 112(6), 1318–1328 (2022).
    • 103. Plöthner M, Ribbentrop D, Hartman JP, Frank M. Cost-effectiveness of pharmacogenomic and pharmacogenetic test-guided personalized therapies: a systematic review of the approved active substances for personalized medicine in Germany. Adv. Ther. 33(9), 1461–1480 (2016).
    • 104. Ozdemir S, Lee JJ, Chaudhry I, Ocampo RRQ. A systematic review of discrete choice experiments and conjoint analysis on genetic testing. Patient 15(1), 39–54 (2022).
    • 105. Fragoulakis V, Mitropoulou C, van Schaik RH, Maniadakis N, Patrinos GP. An alternative methodological approach for cost-effectiveness analysis and decision making in genomic medicine. OMICS 20(5), 274–282 (2016).
    • 106. Fragoulakis V, Mitropoulou C, Katelidou D et al. Performance ratio based resource allocation decision-making in genomic medicine. OMICS 21(2), 67–73 (2017).