We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Psychiatric Level 1A evidence pharmacogenomics in a Brazilian admixed cohort and global populations

    Helena Pereira Ribeiro

    Department of Morphology & Basic Pathology – Medical School, Faculdade de Medicina de Jundiaí, Jundiaí, 13202-550, Brazil

    ,
    Beatriz Meza Baraldi

    Department of Morphology & Basic Pathology – Medical School, Faculdade de Medicina de Jundiaí, Jundiaí, 13202-550, Brazil

    ,
    Fernanda Rodrigues-Soares

    Department of Pathology, Genetics, & Evolution, Institute of Biological & Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, 38035-180, Brazil

    &
    Aline Cristiane Planello

    *Author for correspondence:

    E-mail Address: alineplanello@g.fmj.br

    Department of Morphology & Basic Pathology – Medical School, Faculdade de Medicina de Jundiaí, Jundiaí, 13202-550, Brazil

    Department of Bioscience, Faculdade de Odontologia de Piracicaba/Universidade de Campinas, 13414-903, Brazil

    Published Online:https://doi.org/10.2217/pgs-2023-0211

    Purpose: To compare minor allele frequencies (MAFs) of psychiatric drug response variants in a Brazilian admixed cohort with global populations and other Brazilian groups. Methods: PharmGKB MAFs were gathered from publicly available genetic datasets for Brazil and worldwide. Results: Among 146 variants in CYP2D6 and CYP2C19, 41 were present in Brazil, mostly rare (MAF <1%). 11 variants showed significant MAF differences with large effect sizes compared with global populations. CYP2C19*3 (rs4986893), CYP2C19*17 (rs12248560), CYP2D6*17 (rs28371706-A) and CYP2D6*29 (rs61736512) exhibited higher frequencies in Brazil, with the latter three also differing from other Brazilian groups. Conclusion: This study highlights significant pharmacogenomic diversity in Brazil and globally, underscoring the need for more research in personalized psychiatric drug therapy.

    References

    • 1. Cipriani A, Furukawa TA, Salanti G et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391(10128), 1357–1366 (2018).
    • 2. Uher R. Genes, environment, and individual differences in responding to treatment for depression. Harv. Rev. Psychiatry 19(3), 109–124 (2011).
    • 3. van Westrhenen R, Ingelman-Sundberg M. Editorial: from trial and error to individualised pharmacogenomics-based pharmacotherapy in psychiatry. Front. Pharmacol. 12, 725565 (2021).
    • 4. Lunenburg CATC, Gasse C. Pharmacogenetics in psychiatric care, a call for uptake of available applications. Psychiatry Res. 292, 113336 (2020).
    • 5. Manchia M, Murri MB. The role of pharmacogenomics in precision psychiatry. Pharmacogenomics 24(10), 523–527 (2023).
    • 6. Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89(3), 464–7 (2011).
    • 7. Gurdasani D, Barroso I, Zeggini E, Sandhu MS. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20(9), 520–535 (2019).
    • 8. Suarez-Kurtz G, de Araújo GS. Pharmacogenetic differentiation across Latin America. Pharmacogenomics 23(4), 225–233 (2022).
    • 9. Suarez-Kurtz G, Paula DP, Struchiner CJ. Pharmacogenomic implications of population admixture: Brazil as a model case. Pharmacogenomics 15(2), 209–219 (2014).
    • 10. Pena SDJ, Santos FR, Tarazona-Santos E. Genetic admixture in Brazil. Am. J. Med. Genet. C Semin. Med. Genet. 184(4), 928–938 (2020).
    • 11. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell 177(1), 26–31 (2019).
    • 12. McInnes G, Yee SW, Pershad Y, Altman RB. Genomewide association studies in pharmacogenomics. Clin. Pharmacol. Ther. 110(3), 637 (2021).
    • 13. Rodrigues-Soares F, Kehdy FSG, Sampaio-Coelho J et al. Genetic structure of pharmacogenetic biomarkers in Brazil inferred from a systematic review and population-based cohorts: a RIBEF/EPIGEN-Brazil initiative. Pharmacogenomics J. 18(6), 749–759 (2018).
    • 14. Bertholim-Nasciben L, Scliar MO, Debortoli G et al. Characterization of pharmacogenomic variants in a Brazilian admixed cohort of elderly individuals based on whole-genome sequencing data. Front. Pharmacol. 14, 1178715 (2023).
    • 15. Magavern EF, Gurdasani D, Ng FL, Lee SS. Health equality, race and pharmacogenomics. Br. J. Clin. Pharmacol. 88(1), 27–33 (2022).
    • 16. Shekhani R, Steinacher L, Swen JJ, Ingelman-Sundberg M. Evaluation of current regulation and guidelines of pharmacogenomic drug labels: opportunities for improvements. Clin. Pharmacol. Ther. 107(5), 1240–1255 (2020).
    • 17. Naslavsky MS, Scliar MO, Yamamoto GL et al. Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat. Commun. 13(1), 1004 (2022).
    • 18. Gudmundsson S, Singer-Berk M, Watts NA et al. Variant interpretation using population databases: Lessons from gnomAD. Hum. Mutat. 43(8), 1012–1030 (2022).
    • 19. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. (Zagreb) 31(1), 010502 (2021).
    • 20. Ialongo C. Understanding the effect size and its measures. Biochem. Med. (Zagreb) 26(2), 150–63 (2016).
    • 21. Moriyama B, Obeng AO, Barbarino J et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin. Pharmacol. Ther. 102(1), 45–51 (2017).
    • 22. Taylor C, Crosby I, Yip V, Maguire P et al. A review of the important role of CYP2D6 in pharmacogenomics. Genes (Basel) 11(11), 1295 (2020).
    • 23. Yang Y, Botton MR, Scott ER, Scott SA. Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics 18(7), 673–685 (2017).
    • 24. Whiffin N, Ware JS, O'Donnell-Luria A. Improving the understanding of genetic variants in rare disease with large-scale reference populations. JAMA 322(13), 1305–1306 (2019).
    • 25. Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S et al. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci. Rep. 10(1), 21310 (2020).
    • 26. Hočevar K, Maver A, Peterlin B. Actionable pharmacogenetic variation in the Slovenian genomic database. Front. Pharmacol. 10, 240 (2019).
    • 27. Jithesh PV, Abuhaliqa M, Syed N et al. A population study of clinically actionable genetic variation affecting drug response from the Middle East. NPJ Genom. Med. 7(1), 10 (2022).
    • 28. Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: milestones and future directions. HGG Adv. 3(2), 100100 (2022).
    • 29. Zhou Y, Mkrtchian S, Kumondai M et al. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J. 19(2), 115–126 (2019).
    • 30. Kaplanis J, Akawi N, Gallone G et al. Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations. Genome Res. 29(7), 1047–1056 (2019).
    • 31. Gaedigk A, Sangkuhl K, Whirl-Carrillo M et al. Prediction of CYP2D6 phenotype from genotype across world populations. Genet. Med. 19(1), 69–76 (2017).
    • 32. Zhou Y, Ingelman-Sundberg M, Lauschke V. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin. Pharmacol. Ther. 102(4), 688–700 (2017).
    • 33. Wang WY, Twesigomwe D, Nofziger C et al. Characterization of novel CYP2D6 alleles across sub-Saharan African populations. J. Pers. Med. 12(10), 1575 (2022).
    • 34. Sistonen J, Sajantila A, Lao O et al. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet. Genomics 17(2), 93–101 (2007).
    • 35. Pietarinen P, Tornio A, Niemi M. High frequency of CYP2D6 ultrarapid metabolizer genotype in the Finnish population. Basic Clin. Pharmacol. Toxicol. 119(3), 291–296 (2016).
    • 36. Pratt VM, Cavallari LH, Del Tredici AL et al. Recommendations for clinical CYP2D6 genotyping allele selection. J. Molec. Diagn. 23(9), 1047–1064 (2021).
    • 37. Pratt VM, Del Tredici AL, Hachad H et al. Recommendations for clinical CYP2C19 genotyping allele selection. J. Molec. Diagn. 20(3), 269–276 (2018).
    • 38. Suarez-Kurtz G, de Araújo GS. Pharmacogenetic differentiation across Latin America. Pharmacogenomics 23(4), 225–233 (2022).
    • 39. Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E et al. Genomic ancestry, CYP2D6, CYP2C9, and CYP2C19 among Latin Americans. Clin. Pharmacol. Ther. 107(1), 257–268 (2020).
    • 40. Bousman CA, Stevenson JM, Ramsey LB et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A genotypes and serotonin reuptake inhibitor antidepressants. Clin. Pharmacol. Ther. 114(1), 51–68 (2023).