We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The role of phenoconversion in the pharmacogenetics of psychiatric medication

    Martina Hahn

    *Author for correspondence:

    E-mail Address: martina.hahn@kgu.de

    Department of Mental Health, Varisano Hospital Frankfurt Hoechst, Frankfurt, 65929, Germany

    Department of Psychiatry, Psychosomatics & Psychotherapy, University Hospital Frankfurt - Goethe University, Frankfurt, 60528, Germany

    &
    Sibylle C Roll

    Department of Psychiatry, Psychosomatics & Psychotherapy, University Hospital Frankfurt - Goethe University, Frankfurt, 60528, Germany

    Published Online:https://doi.org/10.2217/pgs-2023-0100
    Free first page

    References

    • 1. Indiana University. The Flockhart Cytochrome P450 Drug–Drug Interaction Table (2021). https://drug-interactions.medicine.iu.edu/ (Accessed 31 March 2023).
    • 2. Kirchheiner J, Nickchen K, Bauer M et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 9(5), 442–473 (2004).
    • 3. Lima JJ, Thomas CD, Barbarino J et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin. Pharmacol. Ther. 109, 1417–1423 (2021).
    • 4. Bousman CA, Stevenson JM, Ramsey LB et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A genotypes and serotonin reuptake inhibitor antidepressants. Clin. Pharmacol. Ther. doi: 10.1002/cpt.2903 (2023) (Online).
    • 5. Brouwer J, Nijenhuis M, Soree B et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction between CYP2C19 and CYP2D6 and SSRIs. Eur. J. Hum. Genet. doi: 10.1038/s41431-021-01004-7 (2021) (Online).
    • 6. Hahn M, Müller DJ, Roll SC. Frequencies of genetic polymorphisms of clinically relevant gene–drug pairs in a german psychiatric inpatient population. Pharmacopsychiatry 53, 1–9 (2020).
    • 7. Mostafa S, Kirkpatrick CMJ, Byron K et al. An analysis of allele, genotype and phenotype frequencies, actionable pharmacogenomic (PGx) variants and phenoconversion in 5408 Australian patients genotyped for CYP2D6, CYP2C19, CYP2C9 and VKORC1 genes. J. Neural Transm. 126, 5–18 (2019).
    • 8. Scherf-Clavel M, Frantz A, Eckert A et al. Effect of CYP2D6 pharmacogenetic phenotype and phenoconversion on serum concentrations of antidepressants and antipsychotics: a retrospective cohort study. Int. J. Clin. Pharm. doi: 10.1007/s11096-023-01588-8 (2023) (Epub ahead of print).
    • 9. Cicali EJ, Elchynski AL, Cook KJ et al. How to integrate CYP2D6 phenoconversion into clinical pharmacogenetics: a tutorial. Clin. Pharmacol. Ther. 110, 677–687 (2021).
    • 10. Bousman CA, Wu P, Aitchison KJ et al. Sequence2Script: a web-based tool for translation of pharmacogenetic data into evidence-based prescribing recommendations. Front. Pharmacol. 12 doi:10.3389/fphar.2021.636650 (2021) (Online).
    • 11. Hahn M, Roll SC. Pharmakogenetik zur Erhöhung der Arzneimitteltherapiesicherheit. Psychopharmakotherapie 29, 17–26 (2022).
    • 12. Kiss ÁF, Vaskó D, Déri MT et al. Combination of CYP2C19 genotype with non-genetic factors evoking phenoconversion improves phenotype prediction. Pharmacol. Rep. 70, 525–532 (2018).
    • 13. Hagg S, Spigset O, Dahlqvist R. Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br. J. Clin. Pharmacol. 51, 169–173 (2001).
    • 14. Klieber M, Oberacher H, Hofstaetter S et al. CYP2C19 phenoconversion by routinely prescribed proton pump inhibitors omeprazole and esomeprazole: clinical implications for personalized medicine. J. Pharmacol. Exp. Ther. 354, 426–430 (2015).
    • 15. Hole K, Arnestad M, Molden E et al. Dose-dependent inhibition of CYP2D6 by bupropion in patients with depression. J. Clin. Psychopharmacol. 41(3), 281–285 doi: 10.1097/JCP.0000000000001387 (2021) (Online).
    • 16. Hoffmann M, Russmann S, Niedrig DF. Severe CNS depression with duloxetine, ciprofloxacin and CYP2D6 deficiency-role and recognition of drug–drug–gene interactions. Eur. J. Clin. Pharmacol. 78(4), 703–705 (2022).
    • 17. Hicks JK, Sangkuhl K, Swen JJ et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 102, 37–44 (2017).
    • 18. Roll SC, Hahn M. Rates of divergent pharmacogenes in a psychiatric cohort of inpatients with depression – arguments for preemptive testing. J. Xenobiot. 12(4), 317–328 (2022).
    • 19. Hahn M, Roll SC. The influence of pharmacogenetics on the clinical relevance of pharmacokinetic drug–drug interactions: drug–gene, drug–gene–gene and drug–drug–gene interactions. Pharmaceuticals (Basel) 14(5), 487 (2021).
    • 20. Hahn M, Roll SC. A collaborative approach in pharmacogenetic testing: actionable genotypes of antidepressants and their avoidance in a retrospective study. J. Explor. Res. Pharmacol. doi: 10.14218/JERP.2022.00054;S (2022) (Online).
    • 21. Stäuble CK, Jeiziner C, Bollinger A et al. A guide to a pharmacist-led pharmacogenetic testing and counselling service in an interprofessional healthcare setting. Pharmacy 10(4), 86 (2022).
    • 22. Weitzel KW, Duong BQ, Arwood MJ et al. A stepwise approach to implementing pharmacogenetic testing in the primary care setting. Pharmacogenomics 20(15), 1103–1112 (2019).
    • 23. Hahn M, Eckert A, Frantz A et al. Barriers for implementation of PGx testing in psychiatric hospitals in Germany-results of the FACT-PGx study. Fortschr. Neurol. Psychiatr. doi:10.1055/a-2060-0694 (2023) (Online).
    • 24. Morris SA, Alsaidi AT, Verbyla A et al. Cost effectiveness of pharmacogenetic testing for drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines: a systematic review. Clin. Pharmacol. Ther. 112(6), 1318–1328 (2022).