We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cost–effectiveness of HLA-B*58:01 testing to prevent Stevens–Johnson syndrome/toxic epidermal necrolysis in Vietnam

    Khanh NC Duong

    Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA

    ,
    Dinh Van Nguyen

    Department of Internal Medicine, Respiratory, Allergy & Clinical Immunology Unit, Vinmec Healthcare System, Hanoi, Vietnam

    College of Health Sciences, Vin University, Hanoi, Vietnam

    Department of Medicine, Penn State University, Hershey, PA 17033, USA

    ,
    Nathorn Chaiyakunapruk

    Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA

    IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT 84108, USA

    ,
    Richard E Nelson

    IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT 84108, USA

    Division of Epidemiology, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA

    &
    Daniel C Malone

    *Author for correspondence:

    E-mail Address: dan.malone@utah.edu

    Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA

    Published Online:https://doi.org/10.2217/pgs-2023-0095

    Background:HLA-B*58:01 is strongly associated with allopurinol-induced Stevens–Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) in Vietnam. This study assessed the cost–effectiveness of this testing to prevent SJS/TEN. Methods: A model was developed to compare three strategies: no screening, use allopurinol; HLA-B*58:01 screening; and no screening, use probenecid. A willingness-to-pay of three-times gross domestic product per capita was used. Results: Compared with ‘no screening, use allopurinol’, ‘screening’ increased quality-adjusted life-years by 0.0069 with the incremental cost of Vietnam dong (VND) 14,283,633 (US$617), yielding an incremental cost–effectiveness ratio of VND 2,070,459,122 (US$89,398) per quality-adjusted life-year. Therefore, ‘screening’ was unlikely to be cost-effective under the current willingness-to-pay. Testing's cost–effectiveness may change with targeted high-risk patients, reimbursed febuxostat or lower probenecid prices. Conclusion: The implementation of nationwide HLAB*58:01 testing before the use of allopurinol is not cost-effective, according to this analysis. This may be due to the lack of quality data on the effectiveness of testing and costing data in the Vietnamese population.

    References

    • 1. Schlesinger N, Schumacher HR Jr. Gout: can management be improved? Curr. Opin. Rheumatol. 13(3), 240–244 (2001).
    • 2. Wortmann RL. Gout and hyperuricemia. Curr. Opin. Rheumatol. 14(3), 281–286 (2002).
    • 3. Roujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 331(19), 1272–1285 (1994).
    • 4. Gerull R, Nelle M, Schaible T. Toxic epidermal necrolysis and Stevens–Johnson syndrome: a review. Crit. Care Med. 39(6), 1521–1532 (2011).
    • 5. Yip LW, Thong BY, Lim J et al. Ocular manifestations and complications of Stevens–Johnson syndrome and toxic epidermal necrolysis: an Asian series. Allergy 62(5), 527–531 (2007).
    • 6. Kang HR, Jee YK, Kim YS et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogene. Genomics 21(5), 303–307 (2011).
    • 7. Kaniwa N, Saito Y, Aihara M et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 9(11), 1617–1622 (2008).
    • 8. Tassaneeyakul W, Jantararoungtong T, Chen P et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet. Genomics 19(9), 704–709 (2009).
    • 9. Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med. Genet. 12, 118 (2011).
    • 10. Van Nguyen D, Chu HC, Vidal C et al. Genetic susceptibilities and prediction modeling of carbamazepine and allopurinol-induced severe cutaneous adverse reactions in Vietnamese. Pharmacogenomics 22(1), 1–12 (2021).
    • 11. Dong D, Tan-Koi WC, Teng GG, Finkelstein E, Sung C. Cost–effectiveness analysis of genotyping for HLA-B*5801 and an enhanced safety program in gout patients starting allopurinol in Singapore. Pharmacogenomics 16(16), 1781–1793 (2015).
    • 12. Jutkowitz E, Dubreuil M, Lu N, Kuntz KM, Choi HK. The cost–effectiveness of HLA-B*5801 screening to guide initial urate-lowering therapy for gout in the United States. Semin. Arthritis Rheum. 46(5), 594–600 (2017).
    • 13. Khanna D, Fitzgerald JD, Khanna PP et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. (Hoboken) 64(10), 1431–1446 (2012).
    • 14. Chang WC, Abe R, Anderson P et al. SJS/TEN 2019: from science to translation. J. Dermatol. Sci. 98(1), 2–12 (2020).
    • 15. Chong HY, Lim YH, Prawjaeng J, Tassaneeyakul W, Mohamed Z, Chaiyakunapruk N. Cost–effectiveness analysis of HLA-B*58: 01 genetic testing before initiation of allopurinol therapy to prevent allopurinol-induced Stevens–Johnson syndrome/toxic epidermal necrolysis in a Malaysian population. Pharmacogenet. Genomics 28(2), 56–67 (2018).
    • 16. Ke CH, Chung WH, Wen YH et al. Cost–-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J. Rheumatol. 44(6), 835–843 (2017).
    • 17. Park DJ, Kang JH, Lee JW et al. Cost–effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in Korea. Arthritis Care Res. (Hoboken) 67(2), 280–287 (2015).
    • 18. Plumpton CO, Alfirevic A, Pirmohamed M, Hughes DA. Cost effectiveness analysis of HLA-B*58:01 genotyping prior to initiation of allopurinol for gout. Rheumatology (Oxford) 56(10), 1729–1739 (2017).
    • 19. Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost–effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLOS One 9(4), e94294 (2014).
    • 20. Teng GG, Tan-Koi WC, Dong D, Sung C. Is HLA-B*58:01 genotyping cost effective in guiding allopurinol use in gout patients with chronic kidney disease? Pharmacogenomics 21(4), 279–291 (2020).
    • 21. Yeo SI. HLA-B*5801: utility and cost–effectiveness in the Asia–Pacific region. Int. J. Rheum. Dis. 16(3), 254–257 (2013).
    • 22. Ha Pham TT, Tran QB, Chu CH et al. Allopurinol-induced severe cutaneous adverse reactions in Vietnamese: the role of HLA alleles and other risk factors. Pharmacogenomics 23(5), 303–313 (2022).
    • 23. Nguyen DV, Vida C, Chu HC, Fulton R, Li J, Fernando SL. Validation of a rapid, robust, inexpensive screening method for detecting the HLA-B*58:01 allele in the prevention of allopurinol-induced severe cutaneous adverse reactions. Allergy Asthma Immunol. Res. 9(1), 79–84 (2017).
    • 24. Nguyen DV, Vidal C, Chu HC, Van Nunen S. Developing pharmacogenetic screening methods for an emergent country: Vietnam. World Allergy Organ J. 12(5), 100037 (2019).
    • 25. Chumnumwat S, Lu ZH, Sukasem C et al. Southeast Asian Pharmacogenomics Research Network (SEAPharm): current status and perspectives. Public Health Genomics 22(3-4), 132–139 (2019).
    • 26. Vietnam Ministry of Health reimbursement drug list formulary. https://thuvienphapluat.vn/van-ban/Bao-hiem/Thong-tu-30-2018-TT-BYT-thanh-toan-thuoc-hoa-duoc-sinh-pham-cua-nguoi-tham-gia-bao-hiem-y-te-400326.aspx?fbclid=IwAR0-jzjp2dE7WIiXJjFmDr2jpInZDsg49tCyLHxKO1qBgrC2IAdIc-MEEAo (25 December 2022).
    • 27. Do MD, Mai TP, Do AD et al. Risk factors for cutaneous reactions to allopurinol in Kinh Vietnamese: results from a case–control study. Arthritis Res. Ther. 22(1), 182 (2020).
    • 28. Huong dan chan doan va dieu tri cac benh co xuong khop. https://kcb.vn/upload/2005611/20210723//HD%C4%90T-C%C6%A1-X%C6%B0%C6%A1ng-Kh%E1%BB%9Bp.pdf (25 December 2022).
    • 29. Ministry of Health of Vietnam. Hanoi, Vietnam, Vietnamese Guideline for Pharmacoeconomic Studies. (2021).
    • 30. Life Tables by Country, Viet Nam. WHO, Geneva, Switzerland (25 December 2022). (2021).
    • 31. Ara R, Brazier J. Comparing EQ-5D scores for comorbid health conditions estimated using 5 different methods. Med. Care 50(5), 452–459 (2012).
    • 32. Drug Administration of Vietnam, Hanoi, Vietnam. Wholesale prices. (2021). https://dichvucong.dav.gov.vn/congbogiathuoc/index (25 December 2022).
    • 33. Turner HC, Lauer JA, Tran BX, Teerawattananon Y, Jit M. Adjusting for inflation and currency changes within health economic studies. Value Health 22(9), 1026–1032 (2019).
    • 34. GDP Deflator (Base Year Varies by Country). World Bank, Washington, DC, USA (25 December 2022) (2021).
    • 35. Official Exchange Rate (LCU per US$, Period Average). World Bank, Washington, DC, USA (25 December 2022) (2021).
    • 36. GDP per Capita. World Bank, Washington, DC, USA (25 December 2022) (2021).
    • 37. Briggs AH. Handling uncertainty in cost–effectiveness models. Pharmacoeconomics 17(5), 479–500 (2000).
    • 38. An A, Sas SR, Ar R et al. Willingness to pay for cancer genetic testing in a tertiary healthcare centre. IIUM 20(3), 5–12 (2021).
    • 39. Dong D, Ozdemir S, Mong Bee Y, Toh SA, Bilger M, Finkelstein E. Measuring high-risk patients' preferences for pharmacogenetic testing to reduce severe adverse drug reaction: a discrete choice experiment. Value Health 19(6), 767–775 (2016).
    • 40. Grosse SD, Wordsworth S, Payne K. Economic methods for valuing the outcomes of genetic testing: beyond cost–effectiveness analysis. Genet. Med. 10(9), 648–654 (2008).
    • 41. Neumann PJ, Garrison LP, Willke RJ. The history and future of the “ISPOR Value Flower”: addressing limitations of conventional cost–effectiveness analysis. Value Health 25(4), 558–565 (2022).
    • 42. Saeed H, Mantagos IS, Chodosh J. Complications of Stevens–Johnson syndrome beyond the eye and skin. Burns 42(1), 20–27 (2016).