We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

CYP2C18: the orphan in the CYP2C family

    Pablo Zubiaur

    Department of Clinical Pharmacology, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain

    Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USA

    &
    Andrea Gaedigk

    *Author for correspondence:

    E-mail Address: agaedigk@cmh.edu

    Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USA

    School of Medicine, University of Missouri–Kansas City, Kansas City, MO, USA

    Published Online:https://doi.org/10.2217/pgs-2022-0142
    Free first page

    References

    • 1. https://cpicpgx.org/guidelines/
    • 2. Whirl-Carrillo M, Huddart R, Gong L et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol. Ther. 110(3), 563–572 (2021).
    • 3. www.pharmgkb.org/pathway/PA145011113
    • 4. www.pharmgkb.org/pathway/PA153627759
    • 5. www.pharmgkb.org/pathway/PA152530846
    • 6. www.pharmgkb.org/pathway/PA145011113
    • 7. www.pharmgkb.org/pathway/PA166163705
    • 8. www.pharmgkb.org/pathway/PA166247041
    • 9. www.pharmgkb.org/pathway/PA166160830
    • 10. Dinh JC, Pearce RE, Van Haandel L, Gaedigk A, Leeder JS. Characterization of atomoxetine biotransformation and implications for development of PBPK models for dose individualization in children. Drug Metab. Dispos. 44(7), 1070–1079 (2016).
    • 11. Läpple F, von Richter O, Fromm MF et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 13(9), 565–575 (2003).
    • 12. Gaedigk A, Casey ST, Whirl-Carrillo M, Miller NA, Klein TE. Pharmacogene Variation Consortium: a global resource and repository for pharmacogene variation. Clin. Pharmacol. Ther. 110(3), 542–545 (2021).
    • 13. Gaedigk A, Ingelman-Sundberg M, Miller NA et al. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther. 103(3), 399–401 (2018).
    • 14. Sangkuhl K, Claudio-Campos K, Cavallari LH et al. PharmVar GeneFocus: CYP2C9. Clin. Pharmacol. Ther. 110(3), 662–676 (2021).
    • 15. Botton MR, Whirl-Carrillo M, Del Tredici AL et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 109(2), 352–366 (2021).
    • 16. Gaedigk A, Boone EC, Scherer SE et al. CYP2C8, CYP2C9, and CYP2C19 characterization using next-generation sequencing and haplotype analysis: a GeT-RM collaborative project. J. Mol. Diagn. 24(4), 337–350 (2022).
    • 17. Bråten LS, Haslemo T, Jukic MM et al. A novel CYP2C haplotype associated with ultrarapid metabolism of escitalopram. Clin Pharmacol. Ther. 110(3), 786–793 (2021).
    • 18. Kee PS, Maggo SDS, Kennedy MA et al. Omeprazole treatment failure in gastroesophageal reflux disease and genetic variation at the CYP2C locus. Front. Genet. 13, 869160 (2022).
    • 19. www.ebi.ac.uk/Tools/psa/emboss_stretcher/
    • 20. www.proteinatlas.org/
    • 21. www.gtexportal.org/home/
    • 22. Uhlén M, Fagerberg L, Hallström BM et al. Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015).
    • 23. Wenzel C, Drozdzik M, Oswald S. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1180, 122891 (2021).
    • 24. Takayama K, Ito K, Matsui A et al. In vivo gene expression profile of human intestinal epithelial cells: from the viewpoint of drug metabolism and pharmacokinetics. Drug Metab. Dispos. 49(3), 221–232 (2021).
    • 25. Miyauchi E, Tachikawa M, Declèves X et al. Quantitative atlas of cytochrome P450, UDP-glucuronosyltransferase, and transporter proteins in jejunum of morbidly obese subjects. Mol. Pharm. 13(8), 2631–2640 (2016).
    • 26. Wu Y, Chitranshi P, Loukotková L et al. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Arch. Toxicol. 91(6), 2405–2423 (2017).
    • 27. Fang WB, Lofwall MR, Walsh SL, Moody DE. Determination of oxycodone, noroxycodone and oxymorphone by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry in human matrices: in vivo and in vitro applications. J. Anal. Toxicol. 37(6), 337–344 (2013).
    • 28. Yamane M, Kawashima K, Yamaguchi K et al. In vitro profiling of the metabolism and drug–drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP. Xenobiotica 45(3), 230–238 (2015).
    • 29. Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem. Pharmacol. 153, 196–204 (2018).
    • 30. Maagdenberg H, Bierings MB, van Ommen CH et al. The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study. J. Thromb. Haemost. 16(9), 1732–1742 (2018).
    • 31. Collins JM, Wang D. Regulation of CYP3A4 and CYP3A5 by a lncRNA: a potential underlying mechanism explaining the association between CYP3A4*1G and CYP3A metabolism. Pharmacogenet. Genomics 32(1), 16–23 (2022).
    • 32. Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr. Drug Metab. 16(2), 86–96 (2015).
    • 33. Yu D, Green B, Tolleson WH et al. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem. Pharmacol. 98(1), 215–223 (2015).
    • 34. Zhang S-Y, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA. Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol. Pharmacol. 82(3), 529–540 (2012).