We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Relevance of NR1I2 variants on carbamazepine therapy in Mexican Mestizos with epilepsy at a tertiary-care hospital

    Ingrid Fricke-Galindo

    Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico

    ,
    Helgi Jung-Cook

    National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico

    National Autonomous University of Mexico, Mexico City, Mexico, Av. Universidad 3000, C.U., 04510, Coyoacán, Mexico City, Mexico

    ,
    Iris E Martínez-Juárez

    National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico

    ,
    Nancy Monroy-Jaramillo

    National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico

    ,
    Alberto Ortega-Vázquez

    Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico

    ,
    Irma S Rojas-Tomé

    National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico

    ,
    Pedro Dorado

    Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain

    Department of Medical-Surgery Therapeutics, University of Extremadura, Avda. Virgen del Puerto, Plasencia, 10600, Spain

    ,
    Eva Peñas-Lledó

    Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain

    Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain

    ,
    Adrián Llerena

    Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain

    Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain

    CICAB Clinical Research Center, Extremadura University Hospital, Campus Universitario, Av. de Elvas, s/n, Badajoz, 06080, Spain

    &
    Marisol López-López

    *Author for correspondence: Tel.: +52 55 5483 7250;

    E-mail Address: marisollopezlopez@gmail.com

    Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico

    Published Online:https://doi.org/10.2217/pgs-2021-0081

    Aim: We evaluated the potential influence of genetic (CYP3A5, EPHX1, NR1I2, HNF4A, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1) and nongenetic factors on carbamazepine (CBZ) response, adverse drug reactions and CBZ plasma concentrations in 126 Mexican Mestizos (MM) with epilepsy. Subjects & methods: Patients were genotyped for 27 variants using TaqMan® assays. Results: CBZ response was associated with NR1I2 variants and lamotrigine cotreatment. CBZ-induced adverse drug reactions were related to antiepileptic polytherapy and SCN1A rs2298771/rs3812718 haplotype. CBZ plasma concentrations were influenced by NR1I2-rs2276707 and -rs3814058, and by phenytoin cotreatment. CBZ daily dose was also influenced by NR1I2-rs3814055 and EPHX1-rs1051740. Conclusion: Interindividual variability in CBZ treatment was partly explained by NR1I2, EPHX1 and SCN1A variants, as well as antiepileptic cotreatment in MM with epilepsy.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. WHO. Model list of essential medicines (2019). https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf?ua=1
    • 2. Gierbolini J, Giarratano M, Benbadis SR. Carbamazepine-related antiepileptic drugs for the treatment of epilepsy-a comparative review. Expert Opin. Pharmacother. 17(7), 885–888 (2016).
    • 3. Porter R, Meldrum B. Fármacos anticonvulsivos. In: Farmacología Básica y Clínica. Katzung BMasters STrevor A (Eds). The McGraw-Hill Companies, Inc., USA, 397–407 (2010).
    • 4. Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. Clin. Pharmacokinet. 11(3), 177–198 (1986).
    • 5. Burton M, Shaw L, Schentag J, Evans WE. Applied pharmacokinetics & pharmacodynamics principles of therapeutic drug monitoring. Am. J. Pharm. Educ. 70(6), 148 (2006).
    • 6. Patsalos PN. Antiepileptic Drug Interactions. Springer, London, UK, 15–21 (2015).
    • 7. Thorn CF, Leckband SG, Kelsoe J et al. PharmGKB summary: carbamazepine pathway. Pharmacogenet. Genomics 21(12), 906–910 (2011).
    • 8. Monroy-Jaramillo N, Fricke-Galindo I, Ortega-Vázquez A, Jung-Cook H, LLerena A, López-López M. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. Drug Metabol. Drug Interact. 29(2), 67–79 (2014).
    • 9. Awasthi S, Hallene KL, Fazio V et al. RLIP76, a non-ABC transporter, and drug resistance in epilepsy. BMC Neurosci. 6, 61 (2005).
    • 10. Kim W-J, Lee JH, Yi J et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet. Genomics 20(4), 249–256 (2010).
    • 11. Marino SE, Birnbaum AK, Leppik IE et al. Steady-state carbamazepine pharmacokinetics following oral and stable-labeled intravenous administration in epilepsy patients: effects of race and sex. Clin. Pharmacol. Ther. 91(3), 483–488 (2012).
    • 12. Chbili C, Saguem S, Chbili C et al. Clinical research The relationship between pharmacokinetic parameters of carbamazepine and therapeutic response in epileptic patients. Arch. Med. Sci. 13, 353–360 (2017).
    • 13. Iannaccone T, Sellitto C, Manzo V et al. Pharmacogenetics of carbamazepine and valproate: focus on polymorphisms of drug metabolizing enzymes and transporters. Pharmaceuticals (Basel) 14(3), 204 (2021). •• Recent review highlighting the relevance of drug-metabolizing enzymes and transporters in the pharmacogenetics of carbamazepine.
    • 14. Fricke-Galindo I, Ortega-Vázquez A, Monroy-Jaramillo N et al. Allele and genotype frequencies of genes relevant to anti-epileptic drug therapy in Mexican-Mestizo healthy volunteers. Pharmacogenomics 17(17), 1913–1930 (2016).
    • 15. Chbili C, Fathallah N, Laouani A et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J. Neurogenet. 30(1), 16–21 (2016).
    • 16. Puranik YG, Birnbaum AK, Marino SE et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 14(1), 35–45 (2013). • Pharmacogenetic study of carbamazepine including Africans and White.
    • 17. Ma C-L, Jiao Z, Wu X-Y, Hong Z, Wu Z-Y, Zhong M-K. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics 16(13), 1499–1512 (2015).
    • 18. Hu T, Zeng X, Tian T, Liu J. Association of EPHX1 polymorphisms with plasma concentration of carbamazepine in epileptic patients: systematic review and meta-analysis. J. Clin. Neurosci. 91, 159–171 (2021).
    • 19. Zhao GX, Zhang Z, Cai WK, Shen ML, Wang P, He GH. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: a meta-analysis. Epilepsy Res. 173, 106615 (2021).
    • 20. Subenthiran S, Abdullah NR, Joseph JP et al. Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PLoS ONE 8(5), e64827 (2013).
    • 21. Qu J, Zhou B-T, Yin J-Y et al. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci. Ther. 18(8), 647–651 (2012).
    • 22. Zhou B, Zhou Q, Yin J, Li G, Xu X, Qu J. Comprehensive analysis of the association of SCN1A gene polymorphisms with the retention rate of carbamazepine following monotherapy for new-onset focal seizures in the Chinese Han population. Clin. Exp. Pharmacol. Physiol. 39, 379–384 (2012).
    • 23. Lakhan R, Kumari R, Misra UK, Kalita J, Pradhan S, Mittal B. Differential role of sodium channels SCN1A and SCN2A gene polymorphisms with epilepsy and multiple drug resistance in the north Indian population. Br. J. Clin. Pharmacol. 68(2), 214–220 (2009).
    • 24. Sterjev Z, Kiteva G, Cvetkovska E et al. Influence of the SCN1A IVS5N + 5 G >A polymorphism on therapy with carbamazepine for epilepsy. Balkan J. Med. Genet. 15(1), 19–24 (2012).
    • 25. Zhang X, Liu J, Ye J. Association between SCN1A polymorphism and carbamazepine responsiveness in epilepsy: a meta-analysis. Epilepsy Res. 176, 106627 (2021).
    • 26. Lamba J, Lamba V, Schuetz E. Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr. Drug Metab. 6(4), 369–383 (2005). • Relevance for NR1I2 in the expression of drug-metabolizing enzymes and transporters.
    • 27. Lamba J, Lamba V, Strom S, Venkataramanan R, Schuetz E. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab. Dispos. 36(1), 169–181 (2008). • Report of a NR1I2 variant implicated in the expression of a CYP enzyme.
    • 28. Saruwatari J, Yoshida S, Tsuda Y et al. Pregnane X receptor and hepatocyte nuclear factor 4α polymorphisms are cooperatively associated with carbamazepine autoinduction. Pharmacogenet. Genomics 24(3), 162–171 (2014).
    • 29. Moreno-Estrada A, Gignoux CR, Fernández-López JC et al. Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 344(6189), 1280–1285 (2014).
    • 30. Martínez-Juárez IE, Lóopez-Zapata R, Gómez-Arias B et al. Epilepsia farmacorresistente: uso de la nueva definición y factores de riesgo relacionados. Estudio en población Mexicana de un centro de tercer nivel. Rev. Neurol. 54(3), 159–166 (2012).
    • 31. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2), 263–265 (2005).
    • 32. Purcell S, Neale B, Todd-Brown K et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81(3), 559–575 (2007).
    • 33. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 39(2), 175–191 (2007).
    • 34. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods. 41(4), 1149–1160 (2009).
    • 35. Besag FM, Berry DJ, Pool F, Newbery JE, Subel B. Carbamazepine toxicity with lamotrigine: pharmacokinetic or pharmacodynamic interaction? Epilepsia 39(2), 183–187 (1998).
    • 36. Warner T, Patsalos PN, Prevett M, Elyas AA, Duncan JS. Lamotrigine-induced carbamazepine toxicity: an interaction with carbamazepine-10,11-epoxide. Epilepsy Res. 11(2), 147–150 (1992).
    • 37. Weiner CP, Mason C. Drugs for Pregnant and Lactating Women. Elsevier, The Netherlands, 91–186 (2019).
    • 38. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23(5), 687–702 (2002).
    • 39. Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv. Drug Deliv. Rev. 62(13), 1238–1249 (2010).
    • 40. Ke X-J, Cheng Y-F, Yu N, Di Q. Effects of carbamazepine on the P-gp and CYP3A expression correlated with PXR or NF-κB activity in the bEnd.3 cells. Neurosci. Lett. 690, 48–55 (2019). •• Recent experimental evidence of the modification in P-gp and CYP3A expression due to carbamazepine through the pregnane X receptor.
    • 41. Yu N, Zhang Y-F, Zhang K, Cheng Y-F, Ma H-Y, Di Q. Pregnane X receptor not nuclear factor-kappa B up-regulates P-glycoprotein expression in the brain of chronic epileptic rats induced by kainic acid. Neurochem. Res. 42(8), 2167–2177 (2017). •• Experimental evidence of variation on transporter expression through pregnane X receptor.
    • 42. Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin. Pharmacol. Ther. 80(5), (2006).
    • 43. Hustert E, Zibat A, Presecan-Siedel E et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. 29(11), 1454–1459 (2001).
    • 44. Zhang J, Kuehl P, Green ED et al. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics 11(7), 555–572 (2001).
    • 45. Hung C-C, Jen Tai J, Kao P-J, Lin M-S, Liou H-H. Association of polymorphisms in NR1I2 and ABCB1 genes with epilepsy treatment responses. Pharmacogenomics 8(9), 1151–1158 (2007).
    • 46. Haerian BS, Mohamed E, Lim K et al. Association of ABCB1 and NR1I2 polymorphisms with response to carbamazepine in Malaysian epilepsy patients. FASEB J. 24(Suppl. 1), 756.3–756.3 (2010).
    • 47. Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br. J. Clin. Pharmacol. 66(2), 304–307 (2008).
    • 48. Zhou B-T, Zhou Q-H, Yin J-Y et al. Effects of SCN1A and GABA receptor genetic polymorphisms on carbamazepine tolerability and efficacy in Chinese patients with partial seizures: 2-year longitudinal clinical follow-up. CNS Neurosci. Ther. 18(7), 566–572 (2012).
    • 49. Tate SK, Depondt C, Sisodiya SM et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. PNAS 102(15), 5507–5512 (2005).
    • 50. Hung C-C, Chang W-L, Ho J-L et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 13(2), 159–169 (2012).
    • 51. Makmor-Bakry M, Sills GJ, Hitiris N, Butler E, Wilson EA, Brodie MJ. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin. Neuropharmacol. 32(4), 205–212 (2009).