We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Methods for actionable gene fusion detection in lung cancer: now and in the future

    Pasquale Pisapia

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Francesco Pepe

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Roberta Sgariglia

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Mariantonia Nacchio

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Gianluca Russo

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Gianluca Gragnano

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Floriana Conticelli

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Maria Salatiello

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Caterina De Luca

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Ilaria Girolami

    Division of Pathology, Central Hospital Bolzano, Bolzano, Italy

    ,
    Albino Eccher

    Department of Pathology & Diagnostics, University & Hospital Trust of Verona, Verona, Italy

    ,
    Antonino Iaccarino

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Claudio Bellevicine

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Elena Vigliar

    Department of Public Health, University of Naples Federico II, Naples, Italy

    ,
    Umberto Malapelle

    Department of Public Health, University of Naples Federico II, Naples, Italy

    &
    Giancarlo Troncone

    *Author for correspondence:

    E-mail Address: giancarlo.troncone@unina.it

    Department of Public Health, University of Naples Federico II, Naples, Italy

    Published Online:https://doi.org/10.2217/pgs-2021-0048

    Although gene fusions occur rarely in non-small-cell lung cancer (NSCLC) patients, they represent a relevant target in treatment decision algorithms. To date, immunohistochemistry and fluorescence in situ hybridization are the two principal methods used in clinical trials. However, using these methods in routine clinical practice is often impractical and time consuming because they can only analyze single genes and the quantity of tissue material is often insufficient. Thus, novel technologies, able to test multiple genes in a single run with minimal sample input, are being under investigation. Here, we discuss the utility of next-generation sequencing and nCounter technologies in detecting simultaneous gene fusions in NSCLC patients.

    References

    • 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).
    • 2. Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).
    • 3. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised Phase III trial. Lancet Oncol. 13, 239–246 (2012).
    • 4. Yang JC, Wu YL, Schuler M et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, Phase III trials. Lancet Oncol. 16, 141–151 (2015).
    • 5. Soria JC, Ohe Y, Vansteenkiste J et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).
    • 6. Varella-Garcia M. Chromosomal and genomic changes in lung cancer. Cell Adh Migr. 4, 100–106 (2010).
    • 7. Lindeman NI, Cagle PT, Aisner DL et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 142, 321–346 (2018).
    • 8. Schram AM, Chang MT, Jonsson P, Drilon A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat. Rev. Clin. Oncol. 14, 735–748 (2017).
    • 9. Chmielecki J, Peifer M, Jia P et al. Targeted next-generation sequencing of DNA regions proximal to a conserved GXGXXG signaling motif enables systematic discovery of tyrosine kinase fusions in cancer. Nucleic Acids Res. 38, 6985–6996 (2010).
    • 10. Owen LA, Kowalewski AA, Lessnick SL. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma. PLoS ONE 3, e1965 (2008).
    • 11. Selvanathan SP, Graham GT, Erkizan HV et al. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc. Natl. Acad. Sci. USA 112, E1307–1316 (2015).
    • 12. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 339, 1546–1558 (2013).
    • 13. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med. 7, 129 (2015).
    • 14. Malapelle U, Mayo-de-Las-Casas C, Molina-Vila MA et al. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: a worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathol. 125, 615–626 (2017).
    • 15. Pisapia P, Malapelle U, Roma G et al. Consistency and reproducibility of next-generation sequencing in cytopathology: a second worldwide ring trial study on improved cytological molecular reference specimens. Cancer Cytopathol. 127, 285–296 (2019).
    • 16. Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).
    • 17. Pan Y, Zhang Y, Li Y et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 84, 121–126 (2014).
    • 18. Pisapia P, Lozano MD, Vigliar E et al. ALK and ROS1 testing on lung cancer cytologic samples: perspectives. Cancer Cytopathol. 125, 817–830 (2017).
    • 19. Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).
    • 20. Du X, Shao Y, Qin HF, Tai YH, Gao HJ. ALK-rearrangement in non-small-cell lung cancer (NSCLC). Thorac Cancer 9, 423–430 (2018).
    • 21. Shaw AT, Kim DW, Nakagawa K et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).
    • 22. Solomon BJ, Mok T, Kim DW et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).
    • 23. Peters S, Camidge DR, Shaw AT et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).
    • 24. Hida T, Nokihara H, Kondo M et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised Phase III trial. Lancet 390, 29–39 (2017).
    • 25. Soria JC, Tan DSW, Chiari R et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, Phase III study. Lancet 389, 917–929 (2017).
    • 26. Hida T, Nokihara H, Kondo M et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised Phase III trial. Lancet 390, 29–39 (2017).
    • 27. Peters S, Camidge DR, Shaw AT et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).
    • 28. Shaw AT, Bauer TM, de Marinis F et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N. Engl. J. Med. 383, 2018–2029 (2020).
    • 29. Camidge DR, Kim DW, Tiseo M et al. Exploratory analysis of Brigatinib activity in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer and brain metastases in two clinical trials. J. Clin. Oncol. 36, 2693–2701 (2018).
    • 30. Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).
    • 31. Lin JJ, Shaw AT. Recent advances in targeting ROS1 in lung cancer. J. Thorac Oncol. 12, 1611–1625 (2017).
    • 32. Savic S, Rothschild S, Bubendorf L. Lonely driver ROS1. J. Thorac. Oncol. 12, 776–777 (2017).
    • 33. Shaw AT, Ou SH, Bang YJ et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).
    • 34. Drilon A, Siena S, Ou SI et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two Phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7, 400–409 (2017).
    • 35. Bubendorf L, Büttner R, Al-Dayel F et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 469, 489–503 (2016).
    • 36. Wu S, Wang J, Zhou L et al. Clinicopathological characteristics and outcomes of ROS1-rearranged patients with lung adenocarcinoma without EGFR, KRAS mutations and ALK rearrangements. Thorac. Cancer 6, 413–420 (2015).
    • 37. Zhao J, Zheng J, Kong M, Zhou J, Ding W, Zhou J. Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell. Oncotarget 7, 74162–74170 (2016).
    • 38. Kohno T, Ichikawa H, Totoki Y et al. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med. 18, 375–377 (2012).
    • 39. Li AY, McCusker MG, Russo A et al. RET fusions in solid tumors. Cancer Treat. Rev. 81, 101911 (2019).
    • 40. Mendoza L. Clinical development of RET inhibitors in RET-rearranged non-small cell lung cancer: update. Oncol. Rev. 12, 352 (2018).
    • 41. Lipson D, Capelletti M, Yelensky R et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18, 382–384 (2012).
    • 42. Drilon A, Rekhtman N, Arcila M et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, Phase II, single-arm trial. Lancet Oncol. 17, 1653–1660 (2016).
    • 43. American Association for Cancer Research. First RET Inhibitor on Path to FDA Approval. Cancer Discov. 9(11), 1476–1477 (2019).
    • 44. Drilon A, Oxnard GR, Tan DSW et al. Efficacy of Selpercatinib in RET fusion-positive non-small-cell lung cancer. N. Engl. J. Med. 383, 813–824 (2020).
    • 45. Gainor JF, Curigliano G, Kim DW et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, Phase 1/2 study. Lancet Oncol. 22, 959–969 (2021).
    • 46. Vaishnavi A, Capelletti M, Le AT et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 19, 1469–1472 (2013).
    • 47. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).
    • 48. Harada T, Yatabe Y, Takeshita M et al. Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin. Cancer Res. 17, 2638–2645 (2011).
    • 49. Marchetti A, Felicioni L, Pelosi G et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum. Mutat. 29, 609–616 (2008).
    • 50. Farago AF, Taylor MS, Doebele RC et al. Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precis Oncol. 2018, (2018).
    • 51. Drilon A, Laetsch TW, Kummar S et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).
    • 52. Entrectinib effective across NTRK fusion-positive cancers. Cancer Discov. 9, OF4 2019.
    • 53. TRK Inhibitor Shows Early Promise. Cancer Discov. 6, OF4 (2016).
    • 54. Fernandez-Cuesta L, Plenker D, Osada H et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 4, 415–422 (2014).
    • 55. Jonna S, Feldman RA, Swensen J et al. Detection of NRG1 gene fusions in solid tumors. Clin. Cancer Res. 25, 4966–4972 (2019).
    • 56. Muscarella LA, Rossi A. NRG1: a cinderella fusion in lung cancer? Lung Cancer Manag. 6, 121–123 (2017).
    • 57. Muscarella LA, Trombetta D, Fabrizio FP et al. ALK and NRG1 fusions coexist in a patient with signet ring cell lung adenocarcinoma. J. Thorac. Oncol. 12, e161–e163 (2017).
    • 58. Trombetta D, Graziano P, Scarpa A et al. Frequent NRG1 fusions in Caucasian pulmonary mucinous adenocarcinoma predicted by Phospho-ErbB3 expression. Oncotarget 9, 9661–9671 (2018).
    • 59. Shin DH, Lee D, Hong DW et al. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung. Oncotarget 7, 69450–69465 (2016).
    • 60. Jones MR, Lim H, Shen Y et al. Successful targeting of the NRG1 pathway indicates novel treatment strategy for metastatic cancer. Ann. Oncol. 28, 3092–3097 (2017).
    • 61. Gay ND, Wang Y, Beadling C et al. Durable response to afatinib in lung adenocarcinoma harboring NRG1 gene fusions. J. Thorac. Oncol. 12, e107–e110 (2017).
    • 62. Jang JS, Lee A, Li J et al. Common oncogene mutations and novel SND1-BRAF transcript fusion in lung adenocarcinoma from never smokers. Sci. Rep. 5, 9755 (2015).
    • 63. Ross JS, Wang K, Chmielecki J et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 138, 881–890 (2016).
    • 64. Zhu YC, Wang WX, Xu CW et al. A patient with lung adenocarcinoma with BRAF gene fusion and response to vemurafenib. Clin. Lung Cancer 20, e224–e228 (2019).
    • 65. Conde E, Hernandez S, Prieto M, Martinez R, Lopez-Rios F. Profile of Ventana ALK (D5F3) companion diagnostic assay for non-small-cell lung carcinomas. Expert Rev. Mol. Diagn. 16, 707–713 (2016).
    • 66. Frampton GM, Fichtenholtz A, Otto GA et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).
    • 67. Smuk G, Pajor G, Szuhai K et al. Attenuated isolated 3′ signal: a highly challenging therapy relevant ALK FISH pattern in NSCLC. Lung Cancer 143, 80–85 (2020).
    • 68. Viñal D, Martínez D, Higuera O, de Castro J. Genomic profiling in non-small-cell lung cancer in young patients. A systematic review. ESMO Open 6, 100045 (2021).
    • 69. Sholl LM, Sun H, Butaney M et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am. J. Surg. Pathol. 37, 1441–1449 (2013).
    • 70. Hechtman JF, Benayed R, Hyman DM et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am. J. Surg. Pathol. 41, 1547–1551 (2017).
    • 71. Vigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G. Challenges and opportunities of next-generation sequencing: a cytopathologist's perspective. Cytopathology 26, 271–283 (2015).
    • 72. Sgariglia R, Pisapia P, Nacchio M et al. Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study. J. Clin. Pathol. 70, 803–806 (2017).
    • 73. Malapelle U, Mayo de-Las-Casas C, Rocco D et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br. J. Cancer 116, 802–810 (2017).
    • 74. Rothberg JM, Hinz W, Rearick TM et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).
    • 75. Lira ME, Kim TM, Huang D et al. Multiplexed gene expression and fusion transcript analysis to detect ALK fusions in lung cancer. J. Mol. Diagn. 15, 51–61 (2013).
    • 76. Evangelista AF, Zanon MF, Carloni AC et al. Detection of ALK fusion transcripts in FFPE lung cancer samples by NanoString technology. BMC Pulm. Med. 17, 86 (2017).
    • 77. Reguart N, Teixidó C, Giménez-Capitán A et al. Identification of ALK, ROS1, and RET fusions by a multiplexed mRNA-based assay in formalin-fixed, paraffin-embedded samples from advanced non-small-cell lung cancer patients. Clin. Chem. 63, 751–760 (2017).
    • 78. Rogers TM, Arnau GM, Ryland GL et al. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer. Sci Rep. 7, 42259 (2017).
    • 79. Lira ME, Choi YL, Lim SM et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J. Mol. Diagn. 16, 229–243 (2014).
    • 80. Alì G, Bruno R, Savino M et al. Analysis of fusion genes by NanoString system: a role in lung cytology? Arch. Pathol. Lab. Med. 142, 480–489 (2018).
    • 81. Lin C, Shi X, Yang S et al. Comparison of ALK detection by FISH, IHC and NGS to predict benefit from crizotinib in advanced non-small-cell lung cancer. Lung Cancer 131, 62–68 (2019).
    • 82. Ji X, Che N, Lin R, Chen J, Wu X. Efficient ten-gene analysis of NSCLC tissue samples by next-generation sequencing. Pathol. Res. Pract. 215, 1066–1070 (2019).
    • 83. Zhao R, Zhang J, Han Y et al. Clinicopathological features of ALK expression in 9889 cases of non-small-cell lung cancer and genomic rearrangements identified by capture-based next-generation sequencing: a chinese retrospective analysis. Mol. Diagn. Ther. 23(3), 395–405 (2019).
    • 84. Dacic S, Villaruz LC, Abberbock S, Mahaffey A, Incharoen P, Nikiforova MN. ALK FISH patterns and the detection of ALK fusions by next generation sequencing in lung adenocarcinoma. Oncotarget 7, 82943–82952 (2016).
    • 85. McLeer-Florin A, Duruisseaux M, Pinsolle J et al. ALK fusion variants detection by targeted RNA-next generation sequencing and clinical responses to crizotinib in ALK-positive non-small cell lung cancer. Lung Cancer 116, 15–24 (2018).
    • 86. Letovanec I, Finn S, Zygoura P et al. Evaluation of NGS and RT-PCR methods for ALK rearrangement in European NSCLC patients: results from the European Thoracic Oncology Platform Lungscape Project. J. Thorac. Oncol. 13, 413–425 (2018).
    • 87. Vendrell JA, Taviaux S, Béganton B et al. Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep. 7, 12510 (2017).
    • 88. Marchetti A, Pace MV, Di Lorito A et al. Validation of a new algorithm for a quick and easy RT-PCR-based ALK test in a large series of lung adenocarcinomas: comparison with FISH, immunohistochemistry and next generation sequencing assays. Lung Cancer 99, 11–16 (2016).
    • 89. Reclusa P, Laes JF, Malapelle U et al. EML4-ALK translocation identification in RNA exosomal cargo (ExoALK) in NSCLC patients: a novel role for liquid biopsy. Transl. Cancer Res. 8(Suppl. 1), S76–S78 (2019).
    • 90. Guibert N, Hu Y, Feeney N et al. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann. Oncol. 29, 1049–1055 (2018).
    • 91. Scattone A, Catino A, Schirosi L et al. Discordance between FISH, IHC, and NGS analysis of ALK status in advanced non-small cell lung cancer (NSCLC): a brief report of 7 cases. Transl. Oncol. 12, 389–395 (2019).
    • 92. Fumagalli C, Catania C, Ranghiero A et al. Molecular profile of advanced non-small cell lung cancers in octogenarians: the door to precision medicine in elderly patients. J. Clin. Med. 8(1), 112 (2019).
    • 93. Clavé S, Rodon N, Pijuan L et al. Next-generation sequencing for ALK and ROS1 rearrangement detection in patients with non-small-cell lung cancer: implications of FISH-positive patterns. Clin. Lung Cancer 20(4), e421–e429( 2019).
    • 94. Park S, Ahn BC, Lim SW et al. Characteristics and outcome of ROS1-positive non-small cell lung cancer patients in routine clinical practice. J. Thorac. Oncol. 13, 1373–1382 (2018).
    • 95. Lin JJ, Ritterhouse LL, Ali SM et al. ROS1 fusions rarely overlap with other oncogenic drivers in non-small cell lung cancer. J. Thorac. Oncol. 12, 872–877 (2017).
    • 96. Davies KD, Le AT, Sheren J et al. Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. J. Thorac. Oncol. 13, 1474–1482 (2018).
    • 97. Lindquist KE, Karlsson A, Levéen P et al. Clinical framework for next generation sequencing based analysis of treatment predictive mutations and multiplexed gene fusion detection in non-small cell lung cancer. Oncotarget 8, 34796–34810 (2017).
    • 98. Karlsson A, Cirenajwis H, Ericson-Lindquist K et al. A combined gene expression tool for parallel histological prediction and gene fusion detection in non-small cell lung cancer. Sci Rep. 9, 5207 (2019).
    • 99. Tsoulos N, Papadopoulou E, Metaxa-Mariatou V et al. Tumor molecular profiling of NSCLC patients using next generation sequencing. Oncol. Rep. 38, 3419–3429 (2017).
    • 100. Song Z, Yu X, Zhang Y. Clinicopathologic characteristics, genetic variability and therapeutic options of RET rearrangements patients in lung adenocarcinoma. Lung Cancer 101, 16–21 (2016).
    • 101. Velizheva NP, Rechsteiner MP, Valtcheva N et al. Targeted next-generation-sequencing for reliable detection of targetable rearrangements in lung adenocarcinoma-a single center retrospective study. Pathol. Res. Pract. 214, 572–578 (2018).
    • 102. Vaughn CP, Costa JL, Feilotter HE et al. Simultaneous detection of lung fusions using a multiplex RT-PCR next generation sequencing-based approach: a multi-institutional research study. BMC Cancer 18, 828 (2018).
    • 103. Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J. Clin. Pathol. 72(7), 460–467 (2019).
    • 104. Vaishnavi A, Capelletti M, Le AT et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 19, 1469–1472 (2013).
    • 105. Farago AF, Taylor MS, Doebele RC et al. Clinicopathologic features of non-small-cell lung cancer harboring an NTRK Gene Fusion. JCO Precis Oncol. 2018, (2018).
    • 106. Dhanasekaran SM, Balbin OA, Chen G et al. Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes. Nat. Commun. 5, 5893 (2014).
    • 107. Drilon A, Somwar R, Mangatt BP et al. Response to ERBB3-directed targeted therapy in NRG1-rearranged cancers. Cancer Discov. 8, 686–695 (2018).
    • 108. Plenker D, Bertrand M, de Langen AJ et al. Structural alterations of MET trigger response to MET kinase inhibition in lung adenocarcinoma patients. Clin. Cancer Res. 24, 1337–1343 (2018).
    • 109. Sholl LM, Sun H, Butaney M et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am. J. Surg. Pathol. 37, 1441–1449 (2013).
    • 110. Lee SE, Lee B, Hong M et al. Comprehensive analysis of RET and ROS1 rearrangement in lung adenocarcinoma. Mod. Pathol. 28, 468–479 (2015).
    • 111. Hirsch FR, McElhinny A, Stanforth D et al. PD-L1 immunohistochemistry assays for lung cancer: results from Phase I of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12, 208–222 (2017).
    • 112. Tsao MS, Kerr KM, Kockx M et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of Blueprint Phase 2 project. J. Thorac. Oncol. 13, 1302–1311 (2018).
    • 113. Leighl NB, Page RD, Raymond VM et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin. Cancer Res. 25, 4691–4700 (2019).
    • 114. Aggarwal C, Thompson JC, Black TA et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. JAMA Oncol. 5, 173–180 (2019).
    • 115. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).
    • 116. Nicolè L, Cappello F, Cappellesso R, VandenBussche CJ, Fassina A. MicroRNA profiling in serous cavity specimens: diagnostic challenges and new opportunities. Cancer Cytopathol. 127, 493–500 (2019).
    • 117. Simonato F, Ventura L, Sartori N et al. Detection of microRNAs in archival cytology urine smears. PLoS ONE 8, e57490 (2013).
    • 118. Rossi ED, Bizzarro T, Martini M et al. The evaluation of miRNAs on thyroid FNAC: the promising role of miR-375 in follicular neoplasms. Endocrine 54, 723–732 (2016).
    • 119. Gasparini P, Cascione L, Landi L et al. microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers. Proc. Natl Acad. Sci. USA 112, 14924–14929 (2015).
    • 120. Kim H, Yang JM, Jin Y et al. MicroRNA expression profiles and clinicopathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget 8, 8484–8498 (2017).
    • 121. De Luca C, Pepe F, Iaccarino A et al. RNA-based assay for next-generation sequencing of clinically relevant gene fusions in non-small cell lung cancer. Cancers (Basel) 13, 139 (2021).