We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genetics and antiepileptic mood stabilizer treatment response in bipolar disorder: what do we know?

    Ada Man-Choi Ho

    *Author for correspondence:

    E-mail Address: ho.ada@mayo.edu

    Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Richard M Weinshilboum

    Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Mark A Frye

    Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA

    &
    Joanna M Biernacka

    Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA

    Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA

    Published Online:https://doi.org/10.2217/pgs-2021-0041

    Antiepileptic mood stabilizers (AED-MS) are often used to treat bipolar disorder (BD). Similar to other mood disorder medications, AED-MS treatment response varies between patients. Identification of biomarkers associated with treatment response may ultimately help with the delivery of individualized treatment and lead to improved treatment efficacy. Here, we conducted a narrative review of the current knowledge of the pharmacogenomics of AED-MS (valproic acid, lamotrigine and carbamazepine) treatment response in BD, including genetic contributions to AED-MS pharmacokinetics. Genes involved in neurotransmitter systems and drug transport have been shown to be associated with AED-MS treatment response. As more studies are conducted, and experimental and analytical methods advance, knowledge of AED-MS pharmacogenomics is expected to grow and contribute to precision medicine in BD.

    References

    • 1. Leo RJ, Narendran R. Anticonvulsant use in the treatment of bipolar disorder: a primer for primary care physicians. Prim. Care Companion J. Clin. Psychiatry 1(3), 74–84 (1999).
    • 2. Ortiz A, Alda M. Treatment of bipolar disorder with comorbid migraine. J. Psychiatry Neurosci. 35(1), E1–E2 (2010).
    • 3. Frye MA, Salloum IM. Bipolar disorder and comorbid alcoholism: prevalence rate and treatment considerations. Bipolar Disord. 8(6), 677–685 (2006).
    • 4. Al-Quliti KW. Update on neuropathic pain treatment for trigeminal neuralgia. The pharmacological and surgical options. Neurosciences 20(2), 107–114 (2015).
    • 5. Rybakowski JK. Genetic influences on response to mood stabilizers in bipolar disorder: current status of knowledge. CNS Drugs 27(3), 165–173 (2013).
    • 6. Hou L, Heilbronner U, Degenhardt F et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet 387(10023), 1085–1093 (2016).
    • 7. Tan L, Yu JT, Sun YP, Ou JR, Song JH, Yu Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin. Neurol. Neurosurg. 112(4), 320–323 (2010).
    • 8. Ho PC, Abbott FS, Zanger UM, Chang TK. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J. 3(6), 335–342 (2003).
    • 9. Krishnaswamy S, Hao Q, Al-Rohaimi A et al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J. Pharmacol. Exp. Ther. 313(3), 1340–1346 (2005).
    • 10. Wang P, Lin XQ, Cai WK et al. Effect of UGT2B7 genotypes on plasma concentration of valproic acid: a meta-analysis. Eur. J. Clin. Pharmacol. 74(4), 433–442 (2018).
    • 11. Stewart JD, Horvath R, Baruffini E et al. Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52(5), 1791–1796 (2010).
    • 12. Ho AM, Coombes BJ, Nguyen TTL et al. Mood-stabilizing antiepileptic treatment response in bipolar disorder: a genome-wide association study. Clin. Pharmacol. Ther. 108(6), 1233–1242 (2020).
    • 13. Lee HY, Kim YK. Catechol-O-methyltransferase Val158Met polymorphism affects therapeutic response to mood stabilizer in symptomatic manic patients. Psychiatry Res. 175(1–2), 63–66 (2010).
    • 14. Kim B, Kim CY, Lee MJ, Joo YH. Preliminary evidence on the association between XBP1-116C/G polymorphism and response to prophylactic treatment with valproate in bipolar disorders. Psychiatry Res. 168(3), 209–212 (2009).
    • 15. Lovric M, Bozina N, Hajnsek S et al. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther. Drug Monit. 34(5), 518–525 (2012).
    • 16. Zhou Y, Wang X, Li H et al. Polymorphisms of ABCG2, ABCB1 and HNF4alpha are associated with Lamotrigine trough concentrations in epilepsy patients. Drug Metab. Pharmacokinet. 30(4), 282–287 (2015).
    • 17. Shen CH, Zhang YX, Lu RY et al. Specific OCT1 and ABCG2 polymorphisms are associated with Lamotrigine concentrations in Chinese patients with epilepsy. Epilepsy Res. 127, 186–190 (2016).
    • 18. Ortega-Vazquez A, Fricke-Galindo I, Dorado P et al. Influence of genetic variants and antiepileptic drug co-treatment on lamotrigine plasma concentration in Mexican Mestizo patients with epilepsy. Pharmacogenomics J. 20, 845–856 (2020).
    • 19. Perlis RH, Adams DH, Fijal B et al. Genetic association study of treatment response with olanzapine/fluoxetine combination or lamotrigine in bipolar I depression. J. Clin. Psychiatry 71(5), 599–605 (2010).
    • 20. Djordjevic N, Milovanovic DD, Radovanovic M et al. CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy. Eur. J. Clin. Pharmacol. 72(4), 439–445 (2016).
    • 21. Chbili C, Fathallah N, Laouani A et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J. Neurogenet. 30(1), 16–21 (2016).
    • 22. Park PW, Seo YH, Ahn JY, Kim KA, Park JY. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J. Clin. Pharm. Ther. 34(5), 569–574 (2009).
    • 23. Ganesapandian M, Ramasamy K, Adithan S, Narayan SK. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J. Pharmacol. 51(6), 384–388 (2019).
    • 24. Hung CC, Chang WL, Ho JL et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 13(2), 159–169 (2012).
    • 25. Daci A, Beretta G, Vllasaliu D et al. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of kosovar albanian epileptic patients. PLoS ONE 10(11), e0142408 (2015).
    • 26. Yun W, Zhang F, Hu C et al. Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Res. 107(3), 231–237 (2013).
    • 27. Ma CL, Jiao Z, Wu XY, Hong Z, Wu ZY, Zhong MK. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics 16(13), 1499–1512 (2015).
    • 28. Lu Q, Huang YT, Shu Y et al. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine (Baltimore) 97(30), e11662 (2018).
    • 29. Fricke-Galindo I, Martinez-Juarez IE, Monroy-Jaramillo N et al. HLA-A*02:01:01/-B*35:01:01/-C*04:01:01 haplotype associated with lamotrigine-induced maculopapular exanthema in Mexican Mestizo patients. Pharmacogenomics 15(15), 1881–1891 (2014).
    • 30. Nicoletti P, Barrett S, McEvoy L et al. Shared genetic risk factors across carbamazepine-induced hypersensitivity reactions. Clin. Pharmacol. Ther. 106(5), 1028–1036 (2019).
    • 31. Ramirez E, Bellon T, Tong HY et al. Significant HLA class I type associations with aromatic antiepileptic drug (AED)-induced SJS/TEN are different from those found for the same AED-induced DRESS in the Spanish population. Pharmacol. Res. 115, 168–178 (2017).
    • 32. Kim SH, Lee KW, Song WJ et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res. 97(1–2), 190–197 (2011).
    • 33. Mushiroda T, Takahashi Y, Onuma T et al. Association of HLA-A*31:01 screening with the incidence of carbamazepine-induced cutaneous adverse reactions in a Japanese population. JAMA Neurol. 75(7), 842–849 (2018).
    • 34. Man CB, Kwan P, Baum L et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48(5), 1015–1018 (2007).
    • 35. Hung SI, Chung WH, Jee SH et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics 16(4), 297–306 (2006).
    • 36. Alfirevic A, Jorgensen AL, Williamson PR, Chadwick DW, Park BK, Pirmohamed M. HLA-B locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics 7(6), 813–818 (2006).
    • 37. Lonjou C, Thomas L, Borot N et al. A marker for Stevens-Johnson syndrome: ethnicity matters. Pharmacogenomics J. 6(4), 265–268 (2006).
    • 38. Chung WH, Hung SI, Hong HS et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428(6982), 486 (2004).
    • 39. Ghodke-Puranik Y, Thorn CF, Lamba JK et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics 23(4), 236–241 (2013).
    • 40. Turgut G, Kurt E, Sengul C et al. Association of MDR1 C3435T polymorphism with bipolar disorder in patients treated with valproic acid. Mol. Biol. Rep. 36(3), 495–499 (2009).
    • 41. Zhao M, Zhang T, Li G, Qiu F, Sun Y, Zhao L. Associations of CYP2C9 and CYP2A6 polymorphisms with the concentrations of valproate and its hepatotoxin metabolites and valproate-induced hepatotoxicity. Basic Clin. Pharmacol. Toxicol. 121(2), 138–143 (2017).
    • 42. Dinopoulos A, Karapanou O, Alexopoulou E, Tzetis M, Attilakos A, Fretzayas A. VPA-induced recurrent pancreatitis in a cystic fibrosis carrier. Eur. J. Paediatr. Neurol. 15(5), 453–455 (2011).
    • 43. López-Muñoz F, Shen WW, D'Ocon P, Romero A, Álamo C. A history of the pharmacological treatment of bipolar disorder. Int. J. Mol. Sci. 19(7), 2143 (2018).
    • 44. Johannessen CU, Johannessen SI. Valproate: past, present, and future. CNS Drug Rev. 9(2), 199–216 (2003).
    • 45. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat. Med. 10(7), 685–692 (2004).
    • 46. Schloesser RJ, Huang J, Klein PS, Manji HK. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33(1), 110–133 (2008).
    • 47. Jun C, Choi Y, Lim SM et al. Disturbance of the glutamatergic system in mood disorders. Exp. Neurobiol. 23(1), 28–35 (2014).
    • 48. Petty F. GABA and mood disorders: a brief review and hypothesis. J. Affect. Disord. 34(4), 275–281 (1995).
    • 49. Machado-Vieira R, Ibrahim L, Zarate CA Jr. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci. Ther. 17(6), 699–704 (2011).
    • 50. Arent CO, Valvassori SS, Fries GR et al. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol. Neurobiol. 43(3), 207–214 (2011).
    • 51. Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J. Neurosci. 28(10), 2576–2588 (2008).
    • 52. Grof P, Duffy A, Cavazzoni P et al. Is response to prophylactic lithium a familial trait? J. Clin. Psychiatry 63(10), 942–947 (2002).
    • 53. Kakiuchi C, Iwamoto K, Ishiwata M et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat. Genet. 35(2), 171–175 (2003).
    • 54. Masui T, Hashimoto R, Kusumi I et al. A possible association between the −116C/G single nucleotide polymorphism of the XBP1 gene and lithium prophylaxis in bipolar disorder. Int. J. Neuropsychopharmacol. 9(1), 83–88 (2006).
    • 55. Dickens D, Owen A, Alfirevic A et al. Lamotrigine is a substrate for OCT1 in brain endothelial cells. Biochem. Pharmacol. 83(6), 805–814 (2012).
    • 56. Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55(8), 1364–1375 (2008).
    • 57. Suzuki T, Mihara K, Nagai G et al. Relationship between UGT1A4 and UGT2B7 polymorphisms and the steady-state plasma concentrations of lamotrigine in patients with treatment-resistant depressive disorder receiving lamotrigine as augmentation therapy. Ther. Drug Monit. 41(1), 86–90 (2019).
    • 58. Wang X-Q, Shi X-B, Au R, Chen F-S, Wang F, Lang S-Y. Influence of chemical structure on skin reactions induced by antiepileptic drugs – the role of the aromatic ring. Epilepsy Res. 94(3), 213–217 (2011).
    • 59. Knowles SR, Shapiro LE, Shear NH. Anticonvulsant hypersensitivity syndrome. Drug Saf. 21(6), 489–501 (1999).
    • 60. Deng Y, Li S, Zhang L, Jin H, Zou X. Association between HLA alleles and lamotrigine-induced cutaneous adverse drug reactions in Asian populations: a meta-analysis. Seizure 60, 163–171 (2018).
    • 61. Li W, Wang J, Lin H, Shen G. HLA-A *24:02 associated with lamotrigine-induced cutaneous adverse drug reactions: a systematic review and meta-analysis. Medicine (Baltimore) 99(52), e23929 (2020).
    • 62. Li X, Yu K, Mei S et al. HLA-B*1502 increases the risk of phenytoin or lamotrigine induced Stevens-Johnson Syndrome/toxic epidermal necrolysis: evidence from a meta-analysis of nine case-control studies. Drug Res. (Stuttg.) 65(2), 107–111 (2015).
    • 63. Ito A, Shimada H, Ishikawa K et al. Association between HLA-DRB1*0405, -DQB1*0401 and -DQA1*0303 alleles and lamotrigine-induced cutaneous adverse drug reactions. A pilot case-control study from Japan. J. Affect. Disord. 179, 47–50 (2015).
    • 64. Kim BK, Jung JW, Kim TB et al. HLA-A*31:01 and lamotrigine-induced severe cutaneous adverse drug reactions in a Korean population. Ann. Allergy Asthma Immunol. 118(5), 629–630 (2017).
    • 65. Park HJ, Kim YJ, Kim DH et al. HLA allele frequencies in 5802 Koreans: varied allele types associated with SJS/TEN according to culprit drugs. Yonsei Med. J. 57(1), 118–126 (2016).
    • 66. Buyukozturk S, Kekik C, Gokyigit AZ et al. Cutaneous drug reactions to antiepileptic drugs and relation with HLA alleles in the Turkish population. Eur. Ann. Allergy Clin. Immunol. 50(1), 36–41 (2018).
    • 67. Prabhavalkar KS, Poovanpallil NB, Bhatt LK. Management of bipolar depression with lamotrigine: an antiepileptic mood stabilizer. Front. Pharmacol. 6, 242 (2015).
    • 68. Stefani A, Hainsworth AH, Spadoni F, Bernardi G. On the inhibition of voltage activated calcium currents in rat cortical neurones by the neuroprotective agent 619C89. Br. J. Pharmacol. 125(5), 1058–1064 (1998).
    • 69. Kuo CC, Lu L. Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br. J. Pharmacol. 121(6), 1231–1238 (1997).
    • 70. Waldmeier PC, Martin P, Stocklin K, Portet C, Schmutz M. Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum. Naunyn Schmiedebergs Arch. Pharmacol. 354(2), 164–172 (1996).
    • 71. Sitges M, Guarneros A, Nekrassov V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na+ channel-mediated release. Neuropharmacology 53(7), 854–862 (2007).
    • 72. Lee CY, Fu WM, Chen CC, Su MJ, Liou HH. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 49(5), 888–897 (2008).
    • 73. Kuzniecky R, Ho S, Pan J et al. Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 58(3), 368–372 (2002).
    • 74. Wang JF, Sun X, Chen B, Young LT. Lamotrigine increases gene expression of GABA-A receptor beta3 subunit in primary cultured rat hippocampus cells. Neuropsychopharmacology 26(4), 415–421 (2002).
    • 75. Southam E, Kirkby D, Higgins GA, Hagan RM. Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. Eur. J. Pharmacol. 358(1), 19–24 (1998).
    • 76. Ahmad S, Fowler LJ, Whitton PS. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res. 63(2–3), 141–149 (2005).
    • 77. Pohjalainen T, Rinne JO, Någren K et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry 3(3), 256–260 (1998).
    • 78. Thompson J, Thomas N, Singleton A et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7(6), 479–484 (1997).
    • 79. Kamei C. Involvement of central histamine in amygdaloid kindled seizures in rats. Behav. Brain Res. 124(2), 243–250 (2001).
    • 80. Ago J, Ishikawa T, Matsumoto N, Ashequr Rahman M, Kamei C. Mechanism of imipramine-induced seizures in amygdala-kindled rats. Epilepsy Res. 72(1), 1–9 (2006).
    • 81. Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, Type 2 diabetes, and metabolic syndrome. Appl. Clin. Genet. 7, 43–53 (2014).
    • 82. Szczepankiewicz A, Rybakowski JK, Suwalska A, Hauser J. Glucocorticoid receptor polymorphism is associated with lithium response in bipolar patients. Neuro. Endocrinol. Lett. 32(4), 545–551 (2011).
    • 83. Uher R, Huezo-Diaz P, Perroud N et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 9(4), 225–233 (2009).
    • 84. Tomson T, Tybring G, Bertilsson L. Single-dose kinetics and metabolism of carbamazepine-10,11-epoxide. Clin. Pharmacol. Ther. 33(1), 58–65 (1983).
    • 85. Tolou-Ghamari Z, Zare M, Habibabadi JM, Najafi MR. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. J. Res. Med. Sci. 18(Suppl. 1), S81–S85 (2013).
    • 86. Ihtisham K, Ramanujam B, Srivastava S et al. Association of cutaneous adverse drug reactions due to antiepileptic drugs with HLA alleles in a North Indian population. Seizure 66, 99–103 (2019).
    • 87. Sukasem C, Chaichan C, Nakkrut T et al. Association between HLA-B alleles and carbamazepine-induced maculopapular exanthema and severe cutaneous reactions in Thai patients. J. Immunol. Res. 2018, 2780272 (2018).
    • 88. Shi YW, Min FL, Zhou D et al. HLA-A*24:02 as a common risk factor for antiepileptic drug-induced cutaneous adverse reactions. Neurology 88(23), 2183–2191 (2017).
    • 89. Sun D, Yu CH, Liu ZS et al. Association of HLA-B*1502 and *1511 allele with antiepileptic drug-induced Stevens-Johnson syndrome in central China. J. Huazhong Univ. Sci. Technolog. Med. Sci. 34(1), 146–150 (2014).
    • 90. Weisler RH. Carbamazepine extended-release capsules in bipolar disorder. Neuropsychiatr. Dis. Treat. 2(1), 3–11 (2006).
    • 91. Willow M, Kuenzel EA, Catterall WA. Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol. Pharmacol. 25(2), 228–234 (1984).
    • 92. McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J. Pharmacol. Exp. Ther. 238(2), 727–738 (1986).
    • 93. Gasior M, Kleinrok Z, Czuczwar SJ. Influence of BAY k-8644, a calcium channel agonist, on the anticonvulsant activity of conventional anti-epileptics against electroconvulsions in mice. Neuropharmacology 34(4), 433–438 (1995).
    • 94. Kito M, Maehara M, Watanabe K. Antiepileptic drugs – calcium current interaction in cultured human neuroblastoma cells. Seizure 3(2), 141–149 (1994).
    • 95. Yoshida S, Okada M, Zhu G, Kaneko S. Carbamazepine prevents breakdown of neurotransmitter release induced by hyperactivation of ryanodine receptor. Neuropharmacology 52(7), 1538–1546 (2007).
    • 96. Granger P, Biton B, Faure C et al. Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol. Pharmacol. 47(6), 1189–1196 (1995).
    • 97. Motohashi N. GABA receptor alterations after chronic lithium administration. Comparison with carbamazepine and sodium valproate. Prog. Neuropsychopharmacol. Biol. Psychiatry 16(4), 571–579 (1992).
    • 98. Lampe H, Bigalke H. Carbamazepine blocks NMDA-activated currents in cultured spinal cord neurons. Neuroreport 1(1), 26–28 (1990).
    • 99. Lancaster JM, Davies JA. Carbamazepine inhibits NMDA-induced depolarizations in cortical wedges prepared from DBA/2 mice. Experientia 48(8), 751–753 (1992).
    • 100. Okada M, Kawata Y, Mizuno K, Wada K, Kondo T, Kaneko S. Interaction between Ca2+, K+, carbamazepine and zonisamide on hippocampal extracellular glutamate monitored with a microdialysis electrode. Br. J. Pharmacol. 124(6), 1277–1285 (1998).
    • 101. Yamamura S, Hamaguchi T, Ohoyama K et al. Topiramate and zonisamide prevent paradoxical intoxication induced by carbamazepine and phenytoin. Epilepsy Res. 84(2–3), 172–186 (2009).
    • 102. Kawata Y, Okada M, Murakami T, Kamata A, Zhu G, Kaneko S. Pharmacological discrimination between effects of carbamazepine on hippocampal basal, Ca(2+)- and K(+)-evoked serotonin release. Br. J. Pharmacol. 133(4), 557–567 (2001).
    • 103. Dailey JW, Reith ME, Steidley KR, Milbrandt JC, Jobe PC. Carbamazepine-induced release of serotonin from rat hippocampus in vitro. Epilepsia 39(10), 1054–1063 (1998).
    • 104. Dailey JW, Reith ME, Yan QS, Li MY, Jobe PC. Anticonvulsant doses of carbamazepine increase hippocampal extracellular serotonin in genetically epilepsy-prone rats: dose response relationships. Neurosci. Lett. 227(1), 13–16 (1997).
    • 105. Barros HM, Braz S, Leite JR. Effect of carbamazepine on dopamine release and reuptake in rat striatal slices. Epilepsia 27(5), 534–537 (1986).
    • 106. Ichikawa J, Meltzer HY. Valproate and carbamazepine increase prefrontal dopamine release by 5-HT1A receptor activation. Eur. J. Pharmacol. 380(1), R1–3 (1999).
    • 107. Baf MH, Subhash MN, Lakshmana KM, Rao BS. Alterations in monoamine levels in discrete regions of rat brain after chronic administration of carbamazepine. Neurochem. Res. 19(9), 1139–1143 (1994).
    • 108. Biber K, Fiebich BL, Gebicke-Harter P, van Calker D. Carbamazepine-induced upregulation of adenosine A1-receptors in astrocyte cultures affects coupling to the phosphoinositol signaling pathway. Neuropsychopharmacology 20(3), 271–278 (1999).
    • 109. Zangrossi H Jr, Leite JR, Graeff FG. Anxiolytic effect of carbamazepine in the elevated plus-maze: possible role of adenosine. Psychopharmacology (Berl.) 106(1), 85–89 (1992).
    • 110. Fujiwara Y, Sato M, Otsuki S. Interaction of carbamazepine and other drugs with adenosine (A1 and A2) receptors. Psychopharmacology (Berl.) 90(3), 332–335 (1986).
    • 111. Krarup S, Mertz C, Jakobsen E, Lindholm SEH, Pinborg LH, Bak LK. Distinct effects on cAMP signaling of carbamazepine and its structural derivatives do not correlate with their clinical efficacy in epilepsy. Eur. J. Pharmacol. 886, 173413 (2020).
    • 112. Chen G, Pan B, Hawver DB, Wright CB, Potter WZ, Manji HK. Attenuation of cyclic AMP production by carbamazepine. J. Neurochem. 67(5), 2079–2086 (1996).
    • 113. Teo R, King J, Dalton E, Ryves J, Williams RS, Harwood AJ. PtdIns(3,4,5)P(3) and inositol depletion as a cellular target of mood stabilizers. Biochem. Soc. Trans. 37(Pt 5), 1110–1114 (2009).
    • 114. Manchia M, Adli M, Akula N et al. Assessment of response to lithium maintenance treatment in bipolar disorder: a Consortium on Lithium Genetics (ConLiGen) report. PLoS ONE 8(6), e65636 (2013).
    • 115. Kuo M-W, Wang C-H, Wu H-C, Chang S-J, Chuang Y-J. Soluble THSD7A is an N-glycoprotein that promotes endothelial cell migration and tube formation in angiogenesis. PLoS ONE 6(12), e29000 (2011).
    • 116. Stahl E, Breen G, Forstner A et al. Genomewide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
    • 117. Martins-de-Souza D, Solari FA, Guest PC, Zahedi RP, Steiner J. Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response. NPJ Schizophr. 1, 15050 (2015).
    • 118. Lee Y, Zhang Y, Kim S, Han K. Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp. Mol. Med. 50(4), 12 (2018).
    • 119. Cole SP. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu. Rev. Pharmacol. Toxicol. 54, 95–117 (2014).
    • 120. Luna-Tortos C, Fedrowitz M, Loscher W. Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology 58(7), 1019–1032 (2010).
    • 121. Baltes S, Fedrowitz M, Tortos CL, Potschka H, Loscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J. Pharmacol. Exp. Ther. 320(1), 331–343 (2007).
    • 122. Lichou F, Trynka G. Functional studies of GWAS variants are gaining momentum. Nat. Commun. 11(1), 6283 (2020).
    • 123. Zhou Y, Mkrtchian S, Kumondai M, Hiratsuka M, Lauschke VM. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J. 19(2), 115–126 (2019).
    • 124. Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol. Cell. Neurosci. 82, 157–166 (2017).
    • 125. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2020).
    • 126. Lin E, Lin CH, Lane HY. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. Int. J. Mol. Sci. 21(3), 969 (2020).