We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The future of pharmacogenetics in the treatment of migraine

    Marina Borro

    Department of Neurosciences, Mental Health & Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy

    Laboratory of Clinical Chemistry, Sant’Andrea Hospital, Rome, Italy

    ,
    Martina Guglielmetti

    Department of Clinical & Molecular Medicine, Sapienza University of Rome, Rome, Italy

    Regional Referral Headache Centre, Sant’Andrea Hospital, Rome, Italy

    Department of Clinical Pathology, University of Sassari, Sassari, Italy

    ,
    Maurizio Simmaco

    Department of Neurosciences, Mental Health & Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy

    Laboratory of Clinical Chemistry, Sant’Andrea Hospital, Rome, Italy

    ,
    Paolo Martelletti

    Department of Clinical & Molecular Medicine, Sapienza University of Rome, Rome, Italy

    Regional Referral Headache Centre, Sant’Andrea Hospital, Rome, Italy

    &
    Giovanna Gentile

    *Author for correspondence:

    E-mail Address: giovanna.gentile@uniroma1.it

    Department of Neurosciences, Mental Health & Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy

    Laboratory of Clinical Chemistry, Sant’Andrea Hospital, Rome, Italy

    Published Online:https://doi.org/10.2217/pgs-2019-0069

    Migraine is considered one of the most disabling neurological disorder with a high socioeconomic burden. Pharmacological management includes many classes of drugs which in the most cases, are administrated in polytherapy. The therapeutic scheme of migraineurs is often affected by comorbidities which need concomitant medications, thus increasing the risk of side effects related to drug-drug interactions. Pharmacogenetics is a promising tool to achieve a personalized cure based on individual genetic profile while the availability of free online knowledge bases allows to check the potential DDIs of selected medications. Combining, these approaches may offer to clinicians a useful tool to improve the appropriateness of migraine polytherapy choice, aiming to increase the efficacy and reduce the toxicity of pharmacological treatments.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Headache Classification of the International Headache Society. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33, 627–808 (2013).
    • 2. Lanteri-Minet M . Economic burden and costs of chronic migraine. Curr. Pain headache Rep. 18(1), 385 (2014).
    • 3. GBD 2016 Headache Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(2017), 1211–1259 (2017).
    • 4. Steiner TJ , Stovner LJ , Vos T et al. Migraine is first cause of disability in under 50s: will health politicians now take notice? J. Headache Pain 19, 17 (2018).
    • 5. Steiner TJ , Birbeck GL , Jensen RH et al. Headache disorders are third cause of disability worldwide. J. Headache Pain 16, 58 (2015).
    • 6. Martelletti p , Giamberardino MA . Advances in orally administered pharmacotherapy for the treatment of migraine. Exp. Opin. Pharmacother. 20(2), 209–218 (2019).
    • 7. Weatherall MW . The diagnosis and treatment of chronic migraine. Ther. Adv. Chronic Dis. 6, 115–123 (2015).
    • 8. Affaitati G , Martelletti P , Lopopolo M et al. Use of nonsteroidal anti-inflammatory drugs for symptomatic treatment of episodic headache. Pain Pract. 17(3), 392–401 (2017).
    • 9. Belvis R , Mas N , Aceituno A . Migraine attack treatment: a tailormade suit, not one size fits all. Recent Pat. CNS Drug Discov. 9(1), 26–40 (2014).
    • 10. Giamberardino MA , Martelletti P . Emerging drugs for migraine treatment. Exp. Opin. Emerg. Drugs 20(1), 137–147 (2015).
    • 11. Marmura MJ , Silberstein SD , Schwedt TJ . The acute treatment of migraine in adults: the american headache society evidence assessment of migraine pharmacotherapies. Headache 55(1), 3–20 (2015).
    • 12. Vongvaivanich K , Lertakyamanee P , Silberstein SD et al. Late-life migraine accompaniments: a narrative review. Cephalalgia 35, 894–911 (2015).
    • 13. van Os HJA , Mulder IA , Broersen A et al. Migraine and cerebrovascular atherosclerosis in patients with ischemic stroke. Stroke 48, 1973–1975 (2017).
    • 14. Seidel S , Beisteiner R , Manecke M et al. Psychiatric comorbidities and photophobia in patients with migraine. J. Headache Pain 18, 18 (2017).
    • 15. Rainero I , Govone F , Gai A et al. Is migraine primarily a metaboloendocrine disorder? Curr. Pain Headache Rep. 22, 36 (2018).
    • 16. de Tommaso M , Sciruicchio V , Delussi M et al. Symptoms of central sensitization and comorbidity for juvenile fibromyalgia in childhood migraine: an observational study in a tertiary headache center. J. Headache Pain 18, 59 (2017).
    • 17. Ferrari A , Baraldi C , Licata M et al. Polypharmacy among headache patients: a cross-sectional study. CNS Drugs 32, 1 (2018).
    • 18. Gentile G , Cipolla F , Capi M , Simmaco M , Lionetto L , Borro M . Precise medical decision making in geriatric anti-depressant therapy. Exp. Rev. Precision Med. Drug Dev. 1(4), 387–396 (2016).
    • 19. Gasparini CF , Sutherland HG , Griffiths LR . Studies on the pathophysiology and genetic basis of migraine. Curr. Genomics 14, 300–315 (2013).
    • 20. Schurks M . Genetics of migraine in the age of genome-wide associations studies. J. Headache Pain 13(1), 1–9 (2012).
    • 21. Zorina-Lichtenwalter K , Meloto CB , Khoury S et al. Genetic predictions of human chronic pain conditions. Neuroscience 338, 36–62 (2016).
    • 22. Gentile G , Borro M , Noemi L et al. Genetic polymorphism related to efficacy and overuse of triptans in chronic migraine. J. Headache Pain 11, 431–435 (2010).
    • 23. Gentile G , Borro M , Simmaco M et al. Gene polymorphisms involved in triptans pharmacokinetics and pharmacodynamics in migraine therapy. Exp. Opin. Drug Metab. Toxicol. 7(1), 39–47 (2011).
    • 24. Piane M , Lulli P , Farinelli I et al. Genetics of migraine and pharmacogenomics: some considerations. J. Headache Pain 8, 334–339 (2007).
    • 25. Collins FS . Genetics: an explosion of knowledge is transforming clinical practice. Geriatrics 54, 41–47 (1999).
    • 26. Weinshilboum R . Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).
    • 27. Simmaco M , Borro M , Missori S et al. Pharmacogenomics in migraine: catching biomarkers for a predictable disease control. Exp. Rev. Neurother. 9(9), 1267–1269 (2009).
    • 28. Belvis R , Mas N , Aceituno A . Migraine attack treatment: a tailormade suit, not one size fits all. Recent Pat. CNS Drug Discov. 9(1), 26–40 (2014).
    • 29. Holland PR , Goadsby PJ . Targeted CGRP small molecule antagonists for acute migraine therapy. Neurotherapeutics 15(2), 304–312 (2018).
    • 30. Gentile G , Chiossi L , Lionetto L et al. Pharmacogenetic insights into migraine treatment in children. Pharmacogenomics 15(11), 1539–1550 (2014). •• Exhaustive review of the management of pediatric migraine.
    • 31. González-Hernández A , Marichal-Cancino B , MaassenVanDenBrink A et al. Side effects associated with current and prospective antimigraine pharmacotherapies. Exp. Opin. Drug Metab. Toxicol. 14(1), 25–41 (2018).
    • 32. Zanger UM , Schwab M . Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138, 103–141 (2013).
    • 33. Samer CF , Lorenzini KI , Rollason V et al. Applications of CYP450 testing in the clinical setting. Mol. Diagn. Ther. 17(3), 165–184 (2013).
    • 34. Division of Clinical Pharmacology at Indiana University School of Medicine. Cytochrome P450 drug interactions table (2016). www.thblack.com/links/RSD/8_drug_interactions_table.pdf
    • 35. Division of Clinical Pharmacology at Indiana University School of Medicine. P450 drug interaction table (2016). http://medicine.iupui.edu/clinpharm/ddis/main-table/
    • 36. Madhusoodanan S , Velama U , Parmar J et al. A current review of cytochrome P450 interactions of psychotropic drugs. Ann. Clin. Psychiatry 26, 120–138 (2014).
    • 37. Palleria C , Di Paolo A , Giofrè C et al. Pharmacokinetic drug–drug interaction and their implication in clinical management. J. Res. Med. Sci. 18, 601–610 (2013).
    • 38. Lionetto L , Borro M , Curto M et al. Choosing the safest acute therapy during chronic migraine prophylactic treatment: pharmacokinetic and pharmacodynamic considerations. Exp. Opin. Drug Metab. Toxicol. 12(4), 399–406 (2016). •• Important review for drug–drug interactions (DDIs) in migraine polytherapy.
    • 39. Medscape. Drug interaction checker. http://reference.medscape.com/drug-interactionchecker. • Helpful tool for checking DDIs.
    • 40. Drug interactions checker. www.drugs.com/drug_interactions.html • Helpful tool for checking DDIs.
    • 41. University of Liverpool. Drug interaction checker. www.hep-druginteractions.org/checker • Helpful tool for checking DDIs.
    • 42. Montagna P , Pierangeli G , Cevoli S et al. Pharmacogenetics of headache treatment. Neurol Sci. 26(Suppl. 2), S143–S147 (2005).
    • 43. Tfelt-Hansen P , Brøsen K . Pharmacogenomics and migraine: possible implications. J. Headache Pain 9(1), 13–18 (2008).
    • 44. Borro M , Gentile G , Cipolloni L et al. Personalised healthcare: the DiMA clinical model. Curr. Pharm. Biotechnol. 18, 242–252 (2017).
    • 45. Pomes LM , Gentile G , Simmaco M et al. Tailoring treatment in polymorbid migraine patients through personalized medicine. CNS Drugs 32(6), 559–565 (2018). •• An intriguing personalized medicine strategy for tailored prescription of migraine polytherapy.
    • 46. Ong JJY , De Felice M . Migraine treatment: current acute medications and their potential mechanisms of action. Neurotherapeutics 15(2), 274–290 (2018).
    • 47. Andersson PG , Jespersen LT . Dihydroergotamine nasal spray in the treatment of attacks of cluster headaches. Cephalalgia 6, 51–54 (1986).
    • 48. Kirthi V , Derry S , Moore RA et al. Aspirin with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst. Rev. 4, CD008041 (2010).
    • 49. Rabbie R , Derry S , Moore RA et al. Ibuprofen with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst. Rev. 10, CD008039 (2010).
    • 50. Derry S , Moore RA , McQuay HJ . Paracetamol (acetaminophen) with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst. Rev. 11, CD008040 (2010).
    • 51. Sostres C , Gargallo CJ , Arroyo MT et al. Adverse effects of nonsteroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 24(2), 121–132 (2010).
    • 52. Wolfe MM , Lichtenstein DR , Singh GN . Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. Engl. J. Med. 340(24), 1888–1899 (1999).
    • 53. Fowler TO , Durham CO , Planton J et al. Use of nonsteroidal anti-inflammatory drugs in the older adult. J. Am. Assoc. Nurse Pract. 26(8), 414–423 (2014).
    • 54. Papetti L , Spalice A , Nicita F et al. Migraine treatment in developmental age: guidelines update. J. Headache Pain 11(3), 267–276 (2010).
    • 55. Kuehl GE , Bigler J , Potter JD et al. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. Drug Metab. Dispos. 34(2), 199–202 (2006).
    • 56. García-Martín E , Martínez C , Tabarés B et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin. Pharmacol. Ther. 76(2), 119–127 (2004).
    • 57. Rollason V , Samer CF , Daali Y et al. Prediction by pharmacogenetics of safety and efficacy of non-steroidal anti- inflammatory drugs: a review. Curr. Drug Metab. 15(3), 326–343 (2014).
    • 58. Anzai N , Kanai Y , Endou H . Organic anion transporter family: current knowledge. J. Pharmacol. Sci. 100(5), 411–426 (2006).
    • 59. Theken KN . Variability in analgesic response to non-steroidal anti-inflammatory drugs. Prostaglandins Other Lipid Mediat. 139, 63–70 (2018).
    • 60. Andersen V , Vogel U . Systematic review: interactions between aspirin, and other nonsteroidal anti-inflammatory drugs, and polymorphisms in relation to colorectal cancer. Aliment. Pharmacol. Ther. 40(2), 147–159 (2014).
    • 61. Makar KW , Poole EM , Resler AJ et al. COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations. Cancer Causes Control 24(12), 2059–2075 (2013).
    • 62. Marjan MN , Hamzeh MT , Rahman E et al. A computational prospect to aspirin side effects: aspirin and COX-1 interaction analysis based on non-synonymous SNPs. Comput. Biol. Chem. 51, 57–62 (2014).
    • 63. Perkins JR , Acosta-Herrera M , Plaza-Serón MC et al. Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharmacogenomics J. 19(2), 191–199 (2019).
    • 64. Jóźwiak-Bebenista M , Nowak JZ . Paracetamol: mechanism of action, applications and safety concern. Acta Pol. Pharm. 71(1), 11–23 (2014).
    • 65. Mazaleuskaya LL , Sangkuhl K , Thorn CF et al. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet. Genomics 25(8), 416–426 (2015).
    • 66. Navarro SL , Chen Y , Li L et al. UGT1A6 and UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled diet of select fruits and vegetables. Drug Metab. Dispos. 39(9), 1650–1657 (2011).
    • 67. Court MH , Freytsis M , Wang X et al. The UDP-glucuronosyltransferase (UGT) 1A polymorphism c.2042C>G (rs8330) is associated with increased human liver acetaminophen glucuronidation, increased UGT1A exon 5a/5b splice variant mRNA ratio, and decreased risk of unintentional acetaminophen-induced acute liver failure. J. Pharmacol. Exp. Ther. 345(2), 297–307 (2013).
    • 68. Court MH , Peter I , Hazarika S et al. Candidate gene polymorphisms in patients with acetaminophen-induced acute liver failure. Drug Metab. Dispos. 42(1), 28–32 (2014).
    • 69. Ueshima Y , Tsutsumi M , Takase S et al. Acetaminophen metabolism in patients with different cytochrome P-4502E1 genotypes. Alcohol. Clin. Exp. Res. 20(Suppl. 1), 25A–28A (1996).
    • 70. Kang SH , Jung YH , Kim HY et al. Effect of paracetamol use on the modification of the development of asthma by reactive oxygen species genes. Ann. Allergy Asthma Immunol. 110(5), 364–369 (2013).
    • 71. Macone AE , Perloff MD . Triptans and migraine: advances in use, administration, formulation, and development. Exp. Opinion Pharmacother. 18(4), 387–397 (2017).
    • 72. Ferrari A , Sternieri E , Ferraris E et al. Emerging problems in the pharmacology of migraine: interactions between triptans and drugs for prophylaxis. Pharmacol. Res. 48(1), 1–9 (2003).
    • 73. Terrazzino S , Viana M , Floriddia E et al. The serotonin transporter gene polymorphism STin2 VNTR confers an increased risk of inconsistent response to triptans in migraine patients. Eur. J. Pharmacol. 641(2–3), 82–87 (2010).
    • 74. Tzvetkov MV . OCT1 pharmacogenetics in pain management: is a clinical application within reach? Pharmacogenomics 18(16), 1515–1523 (2017).
    • 75. Cargnin S , Viana M , Sances G et al. Using a genetic risk score approach to predict headache response to triptans in migraine without aura. J. Clin. Pharmacol. 59(2), 288–294 (2019).
    • 76. Dusitanond P , Young WB . Neuroleptics and migraine. Cent. Nerv. Syst. Agents Med. Chem. 9(1), 63–70 (2009).
    • 77. Ravyn D , Ravyn V , Lowney R et al. CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr. Res. 149(1–3), 1–14 (2013).
    • 78. Charbit AR , Akerman S , Goadsby PJ . Dopamine: what's new in migraine? Curr. Opin. Neurol. 23(3), 275–281 (2010).
    • 79. Dresser GK , Spence JD , Bailey DG . Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 38(1), 41–57 (2000).
    • 80. Kellerman D , Kori S , Forst A et al. Lack of drug interaction between the migraine drug MAP0004 (orally inhaled dihydroergotamine) and a CYP3A4 inhibitor in humans. Cephalalgia 32(2), 150–158 (2012).
    • 81. Antonaci F , Ghiotto N , Wu S et al. Recent advances in migraine therapy. Springerplus 5, 637 (2016).
    • 82. Sprenger T , Viana M , Tassorelli C . Current prophylactic medications for migraine and their potential mechanisms of action. Neurotherapeutics 15(2), 313–323 (2018).
    • 83. Ye Q , Yan LY , Xue LJ et al. Flunarizine blocks voltage-gated Na(+) and Ca(2+) currents in cultured rat cortical neurons: a possible locus of action in the prevention of migraine. Neurosci. Lett. 487(3), 394–399 (2011).
    • 84. Ye Q , Wang Q , Yan LY et al. Flunarizine inhibits sensory neuron excitability by blocking voltage-gated Na+ and Ca2+ currents in trigeminal ganglion neurons. Chin. Med. J. 124(17), 2649–2655 (2011).
    • 85. Park JJ , Park KW , Kang J et al. CYP3A4 genetic status may be associated with increased vulnerability to the inhibitory effect of calcium-channel blockers on clopidogrel. Circ. J. 77(5), 1289–1296 (2013).
    • 86. Höcht C , Mayer MA , Opezzo JAW et al. Pharmacokinetic pharmacodynamic modeling of antihypertensive drugs: from basic research to clinical practice. Curr. Hypertens. Rev. 4, 289–302 (2008).
    • 87. Li S , Lin H , Sun W et al. A meta-analysis of the effect of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamics of metoprolol. Int. J. Clin. Pharmacol. Ther. 55, 483–492 (2017). •• Describes comprehensively the pharmacokinetic and pharmacodynamic factors contributing to variability in the response to antihypertensive drugs.
    • 88. Vandell AG , Lobmeyer MT , Gawronski BE et al. G protein receptor kinase 4 polymorphisms: β-blocker pharmacogenetics and treatment-related outcomes in hypertension. Hypertension 60(4), 957–964 (2012).
    • 89. He F , Luo J , Luo Z , Fan L et al. The KCNH2 genetic polymorphism (1956, C>T) is a novel biomarker that is associated with CCB and α,β-ADR blocker response in EH patients in China. PLoS ONE 8(4), e61317 (2013).
    • 90. Huang J , Li C , Song Y et al. ADRB2 polymorphism Arg16Gly modifies the natural outcome of heart failure and dictates therapeutic response to β-blockers in patients with heart failure. Cell Discov. 4, 57 (2018).
    • 91. Cavallari LH , Mason DL . Cardiovascular pharmacogenomics – implications for patients with CKD. Adv. Chronic Kidney Dis. 23(2), 82–90 (2016).
    • 92. Shahin MH , Conrado DJ , Gonzalez D . Genome-wide association approach identified novel genetic predictors of heart rate response to β-blockers. J. Am. Heart Assoc. 7(5), pii:e006463 (2018).
    • 93. Niu Y , Gong Y , Langaee TY et al. Genetic variation in the beta2 subunit of the voltage-gated calcium channel and pharmacogenetic association with adverse cardiovascular outcomes in the INternational VErapamil SR-Trandolapril STudy GENEtic Substudy (INVEST-GENES). Circ. Cardiovasc. Genet. 3(6), 548–555 (2010).
    • 94. Tchivileva IE , Lim PF , Smith SB . Effect of catechol-O-methyltransferase polymorphism on response to propranolol therapy in chronic musculoskeletal pain: a randomized, double-blind, placebo-controlled, crossover pilot study. Pharmacogenet. Genomics 20(4), 239–248 (2010).
    • 95. Burch R . Antidepressants for preventive treatment of migraine. Curr. Treat Options Neurol. 21(4), 18 (2019).
    • 96. Steimer W , Zöpf K , von Amelunxen S et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin. Chem. 51(2), 376–385 (2005).
    • 97. Roberts RL , Joyce PR , Mulder RT et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2(3), 191–196 (2002).
    • 98. Capi M , Gentile G , Lionetto L et al. Pharmacogenetic considerations for migraine therapies. Expert Opin. Drug Metab. Toxicol. 14(11), 1161–1167 (2018).
    • 99. Curto M , Capi M , Martelletti P et al. How do you choose the appropriate migraine pharmacotherapy for an elderly person? Exp. Opinion Pharmacother. 20(1), 1–3 (2019).
    • 100. Pomes LM , Guglielmetti M , Bertamino E . Optimising migraine treatment: from drug–drug interactions to personalized medicine. J.Headache Pain doi:10.1186/s10194-019-1010-3 (2019) (Epub ahead of print). •• An intriguing personalized medicine strategy for tailored prescription of migraine polytherapy.
    • 101. Klein ME , Parvez MM , Shin JG . Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J. Pharm. Sci. 106(9), 2368–2379 (2017).
    • 102. Kelley EF , Snyder EM et al. Economic evaluation of a pharmacogenomic multi-gene panel test to optimize anti-hypertension therapy: simulation study. J. Med. Economics 21(12), 1246–1253 (2018).