We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Does cardiology hold pharmacogenetics to an inconsistent standard? A comparison of evidence among recommendations

    Jasmine A Luzum

    *Author for correspondence: Tel.: +734 615 4851;

    E-mail Address: jluzum@med.umich.edu

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    &
    Jason C Cheung

    Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA

    Department of Pharmacy, Baptist Health Floyd, New Albany, IN, USA 

    Published Online:https://doi.org/10.2217/pgs-2018-0097

    Current guideline recommendations for pharmacogenetic testing for clopidogrel by the American Heart Association/American College of Cardiology (AHA/ACC) contradict the Clinical Pharmacogenetics Implementation Consortium and the US FDA. The AHA/ACC recommends against routine pharmacogenetic testing for clopidogrel because no randomized controlled trials have demonstrated that testing improves patients’ outcomes. However the AHA/ACC and the National Comprehensive Cancer Network (NCCN) recommend other pharmacogenetic tests in the absence of randomized controlled trials evidence. Using clopidogrel as a case example, we compared the evidence for other pharmacogenetic tests recommended by the AHA/ACC and NCCN. In patients that received percutaneous coronary intervention, the evidence supporting pharmacogenetic testing for clopidogrel is stronger than other pharmacogenetic tests recommended by the AHA/ACC and NCCN.

    References

    • 1 Smaha LA; American Heart Association. The American Heart Association get with the guidelines program. Am. Heart J. 148(5 Suppl.), S46–S48 (2004).
    • 2 Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, Writing Committee Members et al. ACCF/AHA Clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the American Heart Association. Circulation 122(5), 537–557 (2010).
    • 3 Levine GN, Bates ER, Bittl JA et al. 2016 ACC/AHA Guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 68(10), 1082–1115 (2016).
    • 4 Scott SA, Sangkuhl K, Stein CM et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 94(3), 317–323 (2013).
    • 5 US FDA: Clopidogrel Prescribing Information (2017). www.accessdata.fda.gov/drugsatfda_docs/label/2017/020839s068lbl.pdf.
    • 6 Gersh BJ, Maron BJ, Bonow RO et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124(24), 2761–2796 (2011).
    • 7 Al-Khatib SM, Stevenson WG, Ackerman MJ et al. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 1(17), S1547–S1527 (2017).
    • 8 Tester DJ, Ackerman MJ. Genetics of long QT syndrome. Methodist Debakey Cardiovasc. J. 10(1), 29–33 (2014).
    • 9 Shen WK, Sheldon RS, Benditt DG et al. 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 136(5), e60–e122 (2017).
    • 10 National Comprehensive Cancer Network (NCCN): Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Colon Cancer (2017). https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf.
    • 11 National Comprehensive Cancer Network (NCCN): Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Acute Lymphoblastic Leukemia (2017). https://www.nccn.org/professionals/physician_gls/pdf/all.pdf.
    • 12 Gillis NK, Innocenti F. Evidence required to demonstrate clinical utility of pharmacogenetic testing: the debate continues. Clin. Pharmacol. Ther. 96(6), 655–657 (2014).
    • 13 Ratain MJ, Johnson JA. Meaningful use of pharmacogenetics. Clin. Pharmacol. Ther. 96(6), 650–652 (2014).
    • 14 Janssens AC, Deverka PA. Useless until proven effective: the clinical utility of preemptive pharmacogenetic testing. Clin. Pharmacol. Ther. 96(6), 652–654 (2014).
    • 15 Luzum JA, Lanfear DE. Pharmacogenetic risk scores for perindopril clinical and cost effectiveness in stable coronary artery disease: when are we ready to implement? J. Am. Heart Assoc. 4(3), e003440 (2016).
    • 16 Altman RB. Pharmacogenomics: “noninferiority” is sufficient for initial implementation. Clin. Pharmacol. Ther. 89(3), 348–350 (2011).
    • 17 Biltaji E, Kumar SS, Enioutina EY, Sherwin CMT. Can ad hoc analyses of clinical trials help personalize treatment decisions? Br. J. Clin. Pharmacol. 83(11), 2337–2338 (2017).
    • 18 Nissen SE. Pharmacogenomics and clopidogrel: irrational exuberance? JAMA 306(24), 2727–2728 (2011).
    • 19 Bottorff MB, Bright DR, Kisor DF. Commentary: should pharmacogenomic evidence be considered in clinical decision making? Focus on select cardiovascular drugs. Pharmacotherapy 37(9), 1005–1013 (2017).
    • 20 Drozda K, Pacanowski MA. Clinical trial designs to support clinical utility of pharmacogenomic testing. Pharmacotherapy 37(9), 1000–1004 (2017).
    • 21 Zeb I, Krim N, Bella J. Role of CYP2C19 genotype testing in clinical use of clopidogrel: is it really useful? Expert Rev. Cardiovasc. Ther. 16(5), 369–377 (2018).
    • 22 Brown SA, Pereira N. Pharmacogenomic impact of CYP2C19 variation on clopidogrel therapy in precision cardiovascular medicine. J. Pers. Med. 8(1), pii:E8 (2018).
    • 23 Cavallari LH. Personalizing antiplatelet prescribing using genetics for patients undergoing percutaneous coronary intervention. Expert Rev. Cardiovasc. Ther. 15(8), 581–589 (2017).
    • 24 Hewett M, Oliver DE, Rubin DL et al. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res. 30(1), 163–165 (2002).
    • 25 Xie X, Ma YT, Yang YN et al. Personalized antiplatelet therapy according to CYP2C19 genotype after percutaneous coronary intervention: a randomized control trial. Int. J. Cardiol. 168(4), 3736–3740 (2013).
    • 26 Notarangelo FM, Maglietta G, Bevilacqua P et al. Pharmacogenomic approach to selecting antiplatelet therapy in acute coronary syndromes: PHARMCLO trial. J. Am. Coll. Cardiol. 71(17), 1869–1877 (2018).
    • 27 Clinicaltrials.gov: Tailoredantiplatelet therapy following PCI (TAILOR-PCI). NCT01742117 (2015). https://clinicaltrials.gov/ct2/show/NCT01742117.
    • 28 Clinicaltrials.gov. Cost–effectiveness of genotype guided treatment with antiplatelet drugs in STEMI patients: optimization of treatment (POPular genetics). NCT01761786 (2017). https://clinicaltrials.gov/ct2/show/NCT01761786.
    • 29 Chevalier B, Montalescot G, Hulot JS, Belle L, Cayla G; GIANT study investigators. CYP2C19 genetic profiling for thienopyridine management after primary percutaneous coronary intervention: results of the GIANT study NCT01134380. Transcatheter Cardiovascular Therapeutics Meeting (2013). https://www.tctmd.com/slide/giant-prospective-registry-study-cyp2c19-genetic-profiling-thienopyridine-management-after.
    • 30 Shen DL, Wang B, Bai J et al. Clinical value of CYP2C19 genetic testing for guiding the antiplatelet therapy in a Chinese population. J. Cardiovasc. Pharmacol. 67(3), 232–236 (2016).
    • 31 Osnabrugge RL, Head SJ, Zijlstra F et al. A systematic review and critical assessment of 11 discordant meta-analyses on reduced-function CYP2C19 genotype and risk of adverse clinical outcomes in clopidogrel users. Genet. Med. 17(1), 3–11 (2015).
    • 32 Shuldiner AR, Vesely MR, Fisch A. CYP2C19 genotype and cardiovascular events. JAMA 307(14), 1482; author reply 1484–1485 (2012).
    • 33 Mega JL, Topol EJ, Sabatine MS. CYP2C19 genotype and cardiovascular events. JAMA 307(14), 1482–1483; author reply 1484–1485 (2012).
    • 34 Mega JL, Simon T, Collet JP et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304(16), 1821–1830 (2010).
    • 35 Sorich MJ, Rowland A, McKinnon RA, Wiese MD. CYP2C19 genotype has a greater effect on adverse cardiovascular outcomes following percutaneous coronary intervention and in Asian populations treated with clopidogrel: a meta-analysis. Circ. Cardiovasc. Genet. 7(6), 895–902 (2014).
    • 36 Mao L, Jian C, Changzhi L et al. Cytochrome CYP2C19 polymorphism and risk of adverse clinical events in clopidogrel-treated patients: a meta-analysis based on 23,035 subjects. Arch. Cardiovasc. Dis. 106(10), 517–527 (2013).
    • 37 Luzum JA, Pakyz RE, Elsey AR et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin. Pharmacol. Ther. 102(3), 502–510 (2017).
    • 38 Empey PE, Stevenson JM, Tuteja S et al. Multisite investigation of strategies for the implementation of CYP2C19 genotype-guided antiplatelet therapy. Clin. Pharmacol. Ther. doi:10.1002/cpt.1006 (2017) (Epub ahead of print).
    • 39 Cavallari LH, Lee CR, Beitelshees AL et al. Multisite investigation of outcomes with implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. JACC Cardiovasc. Interv. 11(2), 181–191 (2018).
    • 40 Lee CR, Sriramoju VB, Cervantes A et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ. Genom. Precis Med. 11(4), e002069 (2018).
    • 41 Locati EH, Zareba W, Moss AJ et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the International LQTS Registry. Circulation 97(22), 2237–2244 (1998).
    • 42 Jons C, Moss AJ, Goldenberg I et al. Risk of fatal arrhythmic events in long QT syndrome patients after syncope. J. Am. Coll. Cardiol. 55(8), 783–788 (2010).
    • 43 Liu JF, Jons C, Moss AJ et al. Risk factors for recurrent syncope and subsequent fatal or near-fatal events in children and adolescents with long QT syndrome. J. Am. Coll. Cardiol. 57(8), 941–950 (2011).
    • 44 Abu-Zeitone A, Peterson DR, Polonsky B, McNitt S, Moss AJ. Efficacy of different β-blockers in the treatment of long QT syndrome. J. Am. Coll. Cardiol. 64(13), 1352–1358 (2014).
    • 45 Priori SG, Schwartz PJ, Napolitano C et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348(19), 1866–1874 (2003).
    • 46 Priori SG, Napolitano C, Schwartz PJ et al. Association of long QT syndrome loci and cardiac events among patients treated with β-blockers. JAMA 292(11), 1341–1344 (2004).
    • 47 Ahn J, Kim HJ, Choi JI et al. Effectiveness of β-blockers depending on the genotype of congenital long-QT syndrome: a meta-analysis. PLoS ONE 12(10), e0185680 (2017).
    • 48 Kim LK, Feldman DN, Swaminathan RV et al. Rate of percutaneous coronary intervention for the management of acute coronary syndromes and stable coronary artery disease in the United States (2007 to 2011). Am. J. Cardiol. 114(7), 1003–1010 (2014).
    • 49 The Pharmacogenomics Knowledgebase (PharmGKB®): implementation resources for pharmacogenomics (2017). https://www.pharmgkb.org/page/pgxImplementationResources.
    • 50 Hicks JK, Bishop JR, Sangkuhl K et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 98(2), 127–134 (2015).
    • 51 Hicks JK, Sangkuhl K, Swen JJ et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. doi:10.1002/cpt.597 (2016) (Epub ahead of print).
    • 52 Moriyama B, Obeng AO, Barbarino J et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and voriconazole therapy. Clin. Pharmacol. Ther. doi:10.1002/cpt.583 (2016) (Epub ahead of print).
    • 53 Clinical Pharmacogenetics Implementation Consortium (CPIC) (2018). https://cpicpgx.org/.
    • 54 Relling MV, Gardner EE, Sandborn WJ et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89(3), 387–391 (2011).
    • 55 Relling MV, Gardner EE, Sandborn WJ et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 93(4), 324–325 (2013).
    • 56 Dong XW, Zheng Q, Zhu MM, Tong JL, Ran ZH. Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease. World J. Gastroenterol. 16(25), 3187–3195 (2010).
    • 57 Ansari A, Arenas M, Greenfield SM et al. Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. 28(8), 973–983 (2008).
    • 58 Newman WG, Payne K, Tricker K et al. A pragmatic randomized controlled trial of thiopurine methyltransferase genotyping prior to azathioprine treatment: the TARGET study. Pharmacogenomics 12(6), 815–826 (2011).
    • 59 Kafatos G, Niepel D, Lowe K et al. RAS mutation prevalence among patients with metastatic colorectal cancer: a meta-analysis of real-world data. Biomark Med. doi:10.2217/bmm-2016-0358 (2017) (Epub ahead of print).
    • 60 Lievre A, Bachet JB, Boige V et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26(3), 374–379 (2008).
    • 61 Amado RG, Wolf M, Peeters M et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(10), 1626–1634 (2008).
    • 62 Douillard JY, Oliner KS, Siena S et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 369(11), 1023–1034 (2013).
    • 63 Lievre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66(8), 3992–3995 (2006).
    • 64 van Helden EJ, Menke-van der Houven van Oordt CW, Heymans MW, Ket JCF, van den Oord R, Verheul HMW. Optimal use of anti-EGFR monoclonal antibodies for patients with advanced colorectal cancer: a meta-analysis. Cancer Metastasis Rev. 36(2), 395–406 (2017).
    • 65 Kwak MS, Cha JM, Yoon JY et al. Prognostic value of KRAS codon 13 gene mutation for overall survival in colorectal cancer: direct and indirect comparison meta-analysis. Medicine 96(35), e7882 (2017).
    • 66 Ridouane Y, Lopes G, Ku G, Masud H, Haaland B. Targeted first-line therapies for advanced colorectal cancer: a Bayesian meta-analysis. Oncotarget 8(39), 66458–66466 (2017).
    • 67 Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol. 53(7), 852–864 (2014).
    • 68 Chan DLH, Segelov E, Wong RS et al. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst. Rev. 6, CD007047 (2017).
    • 69 Montalescot G, Range G, Silvain J et al. High on-treatment platelet reactivity as a risk factor for secondary prevention after coronary stent revascularization: a landmark analysis of the ARCTIC study. Circulation 129(21), 2136–2143 (2014).
    • 70 Bhatt DL, Cryer BL, Contant CF et al. Clopidogrel with or without omeprazole in coronary artery disease. N. Engl. J. Med. 363(20), 1909–1917 (2010).
    • 71 Mega JL, Close SL, Wiviott SD et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360(4), 354–362 (2009).
    • 72 Wood S. Heartwire from Medscape: COGENT 1 trial scrapped, sponsor declares bankruptcy (2009). https://www.medscape.com/viewarticle/587213.
    • 73 Pasternak AL, Ward KM, Luzum JA, Ellingrod VL, Hertz DL. Germline genetic variants with implications for disease risk and therapeutic outcomes. Physiol. Genomics 49(10), 567–581 (2017).
    • 74 Relling MV, Altman RB, Goetz MP, Evans WE. Clinical implementation of pharmacogenomics: overcoming genetic exceptionalism. Lancet Oncol. 11(6), 507–509 (2010).
    • 75 Green MJ, Botkin JR. “Genetic exceptionalism” in medicine: clarifying the differences between genetic and nongenetic tests. Ann. Intern. Med. 138(7), 571–575 (2003).
    • 76 Kranzler HR, Smith RV, Schnoll R, Moustafa A, Greenstreet-Akman E. Precision medicine and pharmacogenetics: what does oncology have that addiction medicine does not? Addiction 112(12), 2086–2094 (2017).
    • 77 Pirmohamed M, Burnside G, Eriksson N et al. A randomized trial of genotype-guided dosing of warfarin. N. Engl. J. Med. 369(24), 2294–2303 (2013).
    • 78 Gage BF, Bass AR, Lin H et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA 318(12), 1115–1124 (2017).
    • 79 Vrinten C, Wardle J. Is cancer a good way to die? A population-based survey among middle-aged and older adults in the United Kingdom. Eur. J. Cancer 56, 172–178 (2016).
    • 80 Schattner E. Dr. Robert Califf shares ideas about real-world evidence and health data. Forbes (2017). https://www.forbes.com/sites/elaineschattner/2017/06/28/dr-robert-califf-shares-ideas-about-real-world-evidence-and-health-data/#26df20d14eb3.
    • 81 O'Gara PT, Kushner FG, Ascheim DD et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127(4), e362–e425 (2013).
    • 82 Wallentin L, Becker RC, Budaj A et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361(11), 1045–1057 (2009).
    • 83 Fan W, Plent S, Prats J, Deliargyris EN. Trends in P2Y12 inhibitor use in patients referred for invasive evaluation of coronary artery disease in contemporary US practice. Am. J. Cardiol. 117(9), 1439–1443 (2016).
    • 84 Estimated cash prices of generic clopidogrel and generic prasugrel (2018). www.goodrx.com.
    • 85 Plumpton CO, Roberts D, Pirmohamed M, Hughes DA. A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. Pharmacoeconomics 34(8), 771–793 (2016).