We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Using genomics to guide treatment for glioblastoma

    Jacob S Young

    Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA

    ,
    Michael D Prados

    Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA

    &
    Nicholas Butowski

    *Author for correspondence:

    E-mail Address: nicholas.butowski@ucsf.edu

    Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA

    Published Online:https://doi.org/10.2217/pgs-2018-0078

    Glioblastoma has been shown to have many different genetic mutations found both within and between tumor samples. Molecular testing and genomic sequencing has helped to classify diagnoses and clarify difficult to interpret histopathological specimens. Genomic information also plays a critical role in prognostication for patients, with IDH mutations and MGMT methylation having significant impact of the response to chemotherapy and overall survival of patients. Unfortunately, personalized medicine and targeted therapy against specific mutations have not been shown to improve patient outcomes. As technology continues to improve, exome and RNA sequencing will play a role in the design of clinical trials, classification of patient subgroups and identification of rare mutations that can be targeted by small-molecule inhibitors and biologic agents.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Aihara K, Mukasa A, Nagae G et al. Genetic and epigenetic stability of oligodendrogliomas at recurrence. Acta Neuropathol. Commun. 5, 18 (2017).
    • 2 Bai H, Harmanci AS, Erson-Omay EZ et al. Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat. Genet. 48, 59–66 (2015).
    • 3 Ballester LY, Olar A, Roy-Chowdhuri S. Next-generation sequencing of central nervous systems tumors: the future of personalized patient management. Neuro. Oncol. 18, 308–310 (2016).
    • 4 Bjerke L, MacKay A, Nandhabalan M et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 3, 512–519 (2013).
    • 5 Bloch O, Lim M, Sughrue ME et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral PD-L1 expression on response to therapy. Clin. Cancer Res. 23(14), 3575–3584 (2017).
    • 6 Blumenthal DT, Dvir A, Lossos A et al. Clinical utility and treatment outcome of comprehensive genomic profiling in high grade glioma patients. J. Neurooncol. 130, 211–219 (2016).
    • 7 Blumenthal DT, Rankin C, Stelzer KJ et al. A Phase III study of radiation therapy (RT) and O6-benzylguanine + BCNU versus RT and BCNU alone and methylation status in newly diagnosed glioblastoma and gliosarcoma: Southwest Oncology Group (SWOG) study S0001. Int. J. Clin. Oncol. 20, 650–658 (2015).
    • 8 Bolouri H, Zhao LP, Holland EC. Big data visualization identifies the multidimensional molecular landscape of human gliomas. Proc. Natl Acad. Sci. 113, 5394–5399 (2016).
    • 9 Brennan C, Momota H, Hambardzumyan D et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4, e7752 (2009).
    • 10 Brennan CW, Verhaak RGW, McKenna A et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).
    • 11 Bush NAO, Butowski N. The effect of molecular diagnostics on the treatment of glioma. Curr. Oncol. Rep. 19, 26 (2017).
    • 12 Butowski NA. Epidemiology and diagnosis of brain tumors. Contin. Lifelong Learn. Neurol. 21, 301–313 (2015).
    • 13 Byron SA, Tran NL, Halperin RF et al. Prospective feasibility trial for genomics-informed treatment in recurrent and progressive glioblastoma. Clin. Cancer Res. 24, 295–305 (2018).
    • 14 Cairncross G, Wang M, Shaw E et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J. Clin. Oncol. 31, 337–343 (2013).
    • 15 Capper D, Jones DTW, Sill M et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).
    • 16 Chamberlain MC. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J. Neurooncol. 114, 237–240 (2013).
    • 17 Chan AKY, Yao Y, Zhang Z et al. TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod. Pathol. 28, 177–186 (2015).
    • 18 Chan AK, Han SJ, Choy W et al. Familial melanoma–astrocytoma syndrome: synchronous diffuse astrocytoma and pleomorphic xanthoastrocytoma in a patient with germline CDKN2A/B deletion and a significant family history. Clin. Neuropathol. 36, 213–221 (2017).
    • 19 Chi AS, Batchelor TT, Kwak EL et al. Rapid radiographic and clinical improvement after treatment of a MET-amplified recurrent glioblastoma with a mesenchymal–epithelial transition inhibitor. J. Clin. Oncol. 30, e30–e33 (2012).
    • 20 Christensen BC, Smith AA, Zheng S et al. DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J. Natl Cancer Inst. 103, 143–153 (2011).
    • 21 Christians A, Hartmann C, Benner A et al. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoS ONE 7, e33449 (2012).
    • 22 Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).
    • 23 Darmanis S, Sloan SA, Croote D et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).
    • 24 De Mattos-Arruda L, Mayor R, Ng CKY et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6, 8839 (2015).
    • 25 Eckel-Passow JE, Lachance DH, Molinaro AM et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 372, 2499–2508 (2015).
    • 26 Euskirchen P, Bielle F, Labreche K et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 134, 691–703 (2017).
    • 27 Fleming TP, Saxena A, Clark WC et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res. 52, 4550–4553 (1992).
    • 28 Gutmann DH, James CD, Poyhonen M et al. Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology 61, 1397–1400 (2003).
    • 29 Haas-Kogan DA, Prados MD, Tihan T et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl Cancer Inst. 97, 880–887 (2005).
    • 30 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
    • 31 Hegi M, Diserens A. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005). • A large prospective trial demonstrating the prognostic importance of genomic information, specifically MGMT methylation, for patients with glioblastoma receiving temozolomide.
    • 32 Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell. Commun. Signal. 11, 97 (2013).
    • 33 Hinkson IV, Davidsen TM, Klemm JD, Kerlavage AR, Kibbe WA. A comprehensive infrastructure for big data in cancer research: accelerating cancer research and precision medicine. Front. Cell Dev. Biol. 5, 83 (2017).
    • 34 Hyman DM, Puzanov I, Subbiah V et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).
    • 35 Jiao Y, Killela PJ, Reitman ZJ et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3, 709–722 (2012).
    • 36 Johnson E, Dickerson KL, Connolly ID, Hayden Gephart M. Single-cell RNA-sequencing in glioma. Curr. Oncol. Rep. 20, 42 (2018).
    • 37 Kaloshi G, Benouaich-Amiel A, Diakite F et al. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68, 1831–1836 (2007).
    • 38 Kessler T, Sahm F, Sadik A et al. Molecular differences in IDH wildtype glioblastoma according to MGMT promoter methylation. Neuro. Oncol. 20, 367–379 (2018).
    • 39 Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012).
    • 40 Kline CN, Joseph NM, Grenert JP et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro. Oncol. 19, 699–709 (2017). • A recent publication highlighting the use of next-generation sequencing for pediatric patients and the potential of this technique to influence therapeutic decision-making.
    • 41 Koelsche C, Sahm F, Capper D et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 126, 907–915 (2013).
    • 42 Korshunov A, Ryzhova M, Hovestadt V et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 129, 669–678 (2015).
    • 43 Koschmann C, Calinescu AA, Nunez FJ et al. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci. Transl. Med. 8, 328ra28 (2016).
    • 44 Kris MG, Johnson BE, Berry LD et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).
    • 45 Le DT, Uram JN, Wang H et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
    • 46 Louis DN, Perry A, Reifenberger G et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).
    • 47 MacArthur KM, Kao GD, Chandrasekaran S et al. Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res. 74, 2152–2159 (2014).
    • 48 Mahlokozera T, Vellimana AK, Li T et al. Biological and therapeutic implications of multisector sequencing in newly diagnosed glioblastoma. Neuro. Oncol. 20, 472–483 (2018).
    • 49 Mazor T, Chesnelong C, Pankov A et al. Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1. Proc. Natl Acad. Sci. USA 114, 10743–10748 (2017).
    • 50 Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).
    • 51 Mohammad F, Weissmann S, Leblanc B et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).
    • 52 Morrissy AS, Cavalli FMG, Remke M et al. Spatial heterogeneity in medulloblastoma. Nat. Genet. 49, 780–788 (2017).
    • 53 Müller C, Holtschmidt J, Auer M et al. Hematogenous dissemination of glioblastoma multiforme. Sci. Transl. Med. 6, 247ra101 (2014).
    • 54 Müller S, Liu SJ, Di Lullo E et al. Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas. Mol. Syst. Biol. 12, 889 (2016).
    • 55 Nakagawa Y, Sasaki H, Ohara K et al. Clinical and molecular prognostic factors for long-term survival of patients with glioblastomas in single-institutional consecutive cohort. World Neurosurg. 106, 165–173 (2017).
    • 56 Nassiri F, Aldape K, Zadeh G. The multiforme of glioblastoma. Neuro. Oncol. 20, 437–438 (2018).
    • 57 Nazarenko I, Hede SM, He X et al. PDGF and PDGF receptors in glioma. Ups J. Med. Sci. 117, 99–112 (2012).
    • 58 Nicolaides TP, Li H, Solomon DA et al. Targeted therapy for BRAFV600E malignant astrocytoma. Clin. Cancer Res. 17, 7595–7604 (2011).
    • 59 Nikiforova MN, Wald AI, Melan MA et al. Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro. Oncol. 18, 379–387 (2016). • One of the first studies demonstrating the feasibility of next-generation sequencing ‘hot spot’ panel for patients with glioblastoma.
    • 60 Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 170, 1445–1453 (2007).
    • 61 Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-mebendazole as an anti-cancer agent. Ecancermedicalscience 8, 443 (2014).
    • 62 Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).
    • 63 Patel AP, Tirosh I, Trombetta JJ et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014). • First publication using single-cell RNA sequencing in glioblastoma to reveal the incredible intratumoral heterogeneity within a tumor.
    • 64 Picca A, Berzero G, Bielle F et al. FGFR1 actionable mutations, molecular specificities, and outcome of adult midline gliomas. Neurology 90, e2086–e2094 (2018).
    • 65 Popovici-Muller J, Lemieux RM, Artin E et al. Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med. Chem. Lett. 9, 300–305 (2018).
    • 66 Prados MD, Byron SA, Tran NL et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro. Oncol. 17, 1051–1063 (2015). • Review of the challenges facing molecular profiling for glioblastoma and some selected examples of targeted treatments.
    • 67 Pusch S, Sahm F, Meyer J, Mittelbronn M, Hartmann C, von Deimling A. Glioma IDH1 mutation patterns off the beaten track. Neuropathol. Appl. Neurobiol. 37, 428–430 (2011).
    • 68 Quillien V, Lavenu A, Karayan-Tapon L et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, methylight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA- methyltranferase in a series of 100. Cancer 118, 4201–4211 (2012).
    • 69 Ravi A, Molinaro A, Han SJ, Chehab F, Berger MS, Butowski N. PATH-08. The prognostic value of a novel quantitative MGMT promoter methylation score for patients with glioblastoma. Neuro. Oncol. 19, vi172–vi172 (2017).
    • 70 Reardon DA, Schuster J, Tran DD et al. ReACT: long-term survival from a randomized Phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J. Clin. Oncol. 33, Abstract 2009 (2015).
    • 71 Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14, 258 (2014).
    • 72 Sahm F, Schrimpf D, Jones DTW et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 131, 903–910 (2016).
    • 73 Schulte A, Liffers K, Kathagen A et al. Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110δ. Neuro. Oncol. 15, 1289–1301 (2013).
    • 74 Schuster J, Lai RK, Recht LD et al. A Phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro. Oncol. 17, 854–861 (2015).
    • 75 See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res. 72, 3350–3359 (2012).
    • 76 See WL, Mukherjee J. Chapter 22: Targeting the RAS-RAF-MEK-ERK signaling pathway in gliomas A2. In: Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy (2nd Edition). Newton HB (Ed.). Academic Press, Cambridge, MA, USA, 323–332 (2018).
    • 77 Shiraishi S, Tada K, Nakamura H et al. Influence of p53 mutations on prognosis of patients with glioblastoma. Cancer 95, 249–257 (2002).
    • 78 Sottoriva A, Spiteri I, Piccirillo SGM et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA 110, 4009–14 (2013).
    • 79 Sullivan JP, Nahed BV, Madden MW et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov. 4, 1299–1309 (2014).
    • 80 Takahashi M, Miki S, Fukuoka K et al. OS01.5 Development of TERT-targeting therapy using eribulin mesylate in mouse glioblastoma model. Neuro. Oncol. 19, iii2 (2017).
    • 81 Tamborero D, Rubio-Perez C, Deu-Pons J et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 10 (2018). • Introduces the Cancer Genome Interpreter, a platform that automates the interpretation of cancer genomic sequencing.
    • 82 Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann. Oncol. 28, 1457–1472 (2017).
    • 83 van den Bent MJ, Baumert B, Erridge SC et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a Phase 3, randomised, open-label intergroup study. Lancet 390, 1645–1653 (2017).
    • 84 Verhaak RGW, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).
    • 85 Vivanco I, Robins H, Rohle D, Campos C. Differential sensitivity of glioma-versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2, 458–71 (2012).
    • 86 Wang X, Chen JX, Liu JP, You C, Liu YH, Mao Q. Gain of function of mutant TP53 in glioblastoma: prognosis and response to temozolomide. Ann. Surg. Oncol. 21, 1337–1344 (2014).
    • 87 Weller M, Butowski N, Tran DD et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international Phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).
    • 88 Westphal M, Heese O, Steinbach JP et al. A randomised, open label Phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur. J. Cancer 51, 522–532 (2015). • Example of a Phase III clinical trial for a targeted glioblastoma therapy that failed to demonstrate a survival benefit.
    • 89 Wick W, Weller M, Van Den Bent M et al. MGMT testing – the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 10, 372–385 (2014).
    • 90 Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).
    • 91 Yap Y-S, McPherson JR, Ong C-K et al. The NF1 gene revisited – from bench to bedside. Oncotarget 5, 5873–5892 (2014).
    • 92 Yip S, Iafrate AJ, Louis DN. Molecular diagnostic testing in malignant gliomas: a practical update on predictive markers. J. Neuropathol. Exp. Neurol. 67, 1–15 (2008).
    • 93 Zacher A, Kaulich K, Stepanow S et al. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol. 27, 146–159 (2017).
    • 94 Zhang G-B, Cui X-L, Sui D-L et al. Differential molecular genetic analysis in glioblastoma multiforme of long- and short-term survivors: a clinical study in Chinese patients. J. Neurooncol. 113, 251–258 (2013).