We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A prospective study of the impact of AGTR1 A1166C on the effects of candesartan in patients with heart failure

    Simon de Denus

    *Author of correspondence: Tel.: +1 514 376 3330; Fax: +1 514 376 1355;

    E-mail Address: simon.dedenus@icm-mhi.org

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    Faculty of Pharmacy, Université de Montréal, Montreal, Canada

    ,
    Marie-Pierre Dubé

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    ,
    René Fouodjio

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    ,
    Thao Huynh

    McGill Health University, McGill University, Montreal, Canada

    ,
    Marie-Hélène LeBlanc

    Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada

    ,
    Serge Lepage

    Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada

    ,
    Richard Sheppard

    Jewish General Hospital, McGill University, Montreal, Canada

    ,
    Nadia Giannetti

    Royal-Victoria Hospital, McGill University, Montreal, Canada

    ,
    Joël Lavoie

    Research Center, Montreal Heart Institute, Montreal, Canada

    ,
    Asmaa Mansour

    Montreal Health Innovations Coordinating Center, a division of the Montreal Heart Institute, Montreal Canada

    ,
    Sylvie Provost

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    ,
    Valérie Normand

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    ,
    Ian Mongrain

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    ,
    Mathieu Langlois

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    ,
    Eileen O'Meara

    Research Center, Montreal Heart Institute, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    ,
    Anique Ducharme

    Research Center, Montreal Heart Institute, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    ,
    Normand Racine

    Research Center, Montreal Heart Institute, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    ,
    Marie-Claude Guertin

    Montreal Health Innovations Coordinating Center, a division of the Montreal Heart Institute, Montreal Canada

    ,
    Jacques Turgeon

    CRCHUM, Research Center, Centre Hospitalier de l'Université de Montréal, Montreal, Canada

    ,
    Michael S Phillips

    Research Center, Montreal Heart Institute, Montreal, Canada

    ,
    Jean-Lucien Rouleau

    Research Center, Montreal Heart Institute, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    ,
    Jean-Claude Tardif

    Research Center, Montreal Heart Institute, Montreal, Canada

    Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    ,
    Michel White

    **Author of correspondence:

    E-mail Address: m_white@icm-mhi.com

    Research Center, Montreal Heart Institute, Montreal, Canada

    Faculty of Medicine, Université de Montréal, Montreal, Canada

    &
    Published Online:https://doi.org/10.2217/pgs-2018-0004

    Aim: To evaluate the impact of AGTR1 A1166C (rs5186) on the response to candesartan in patients with heart failure. Materials & methods: Prospective, multicentre, open-label study. We studied 299 symptomatic patients with heart failure presenting a left ventricular ejection fraction ≤40%. Results: Reductions in the primary end points of natriuretic peptides were not significantly associated with AGTR1 A1166C. Nevertheless, carrying the 1166C allele was associated with a greater compensatory increase in renin activity (p = 0.037) after 16 weeks of treatment with candesartan and a more modest effect on aldosterone concentrations (p = 0.022). Conclusion:AGTR1 1166C carriers may experience a greater long-term compensatory renin–angiotensin–aldosterone system activation following treatment with candesartan. Whether these associations ultimately influence clinical outcomes requires investigation.

    Clinicaltrials.gov: NCT00400582

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1 Unger T, Li J. The role of the renin-angiotensin-aldosterone system in heart failure. J. Renin Angiotensin Aldosterone Syst. 5(Suppl. 1), S7–S10 (2004).
    • 2 Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ. Res. 66(4), 883–890 (1990).
    • 3 Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345(23), 1667–1675 (2001).
    • 4 Pfeffer MA, Swedberg K, Granger CB et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362(9386), 759–766 (2003).
    • 5 Vinck WJ, Fagard RH, Vlietinck R, Lijnen P. Heritability of plasma renin activity and plasma concentration of angiotensinogen and angiotensin-converting enzyme. J. Hum. Hypertens. 16(6), 417–422 (2002).
    • 6 Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 48(5), 914–920 (2006).
    • 7 Newton-Cheh C, Guo CY, Gona P et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension 49(4), 846–856 (2007).
    • 8 Johnson T, Gaunt TR, Newhouse SJ et al. Blood pressure loci identified with a gene-centric array. Am. J. Hum. Genet. 89(6), 688–700 (2011).
    • 9 Newton-Cheh C, Johnson T, Gateva V et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41(6), 666–776 (2009).
    • 10 Liu D-X, Zhang Y-Q, Hu B, Zhang J, Zhao Q. Association of AT1R polymorphism with hypertension risk: an update meta-analysis based on 28,952 subjects. J. Renin Angiotensin Aldosterone Syst. 16(4), 898–909 (2015).
    • 11 Nordestgaard BG, Kontula K, Benn M et al. Effect of ACE insertion/deletion and 12 other polymorphisms on clinical outcomes and response to treatment in the LIFE study. Pharmacogenet. Genomics 20(2), 77–85 (2010).
    • 12 Spiering W, Kroon AA, Fuss-Lejeune MJ, de Leeuw PW. Genetic contribution to the acute effects of angiotensin II type 1 receptor blockade. J. Hypertens. 23(4), 753–758 (2005).
    • 13 Hallberg P, Lind L, Michaelsson K et al. B2 bradykinin receptor (B2BKR) polymorphism and change in left ventricular mass in response to antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J. Hypertens. 21(3), 621–624 (2003).
    • 14 Kurland L, Melhus H, Karlsson J et al. Aldosterone synthase (CYP11B2) -344 C/T polymorphism is related to antihypertensive response: result from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. Am. J. Hypertens. 15(5), 389–393 (2002).
    • 15 Kurland L, Melhus H, Karlsson J et al. Angiotensin-converting enzyme gene polymorphism predicts blood pressure response to angiotensin II receptor type 1 antagonist treatment in hypertensive patients. J. Hypertens. 19(10), 1783–1787 (2001).
    • 16 Brugts JJ, Isaacs A, Boersma E et al. Genetic determinants of treatment benefit of the angiotensin-converting enzyme-inhibitor perindopril in patients with stable coronary artery disease. Eur. Heart J. 31(15), 1854–1864 (2010).
    • 17 Kurland L, Melhus H, Karlsson J et al. Polymorphisms in the angiotensinogen and angiotensin II type 1 receptor gene are related to change in left ventricular mass during antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J. Hypertens. 20(4), 657–663 (2002).
    • 18 de Denus S, Zakrzewski-Jakubiak M, Dube MP et al. Effects of AGTR1 A1166C gene polymorphism in patients with heart failure treated with candesartan. Ann. Pharmacother. 42(7), 925–932 (2008).
    • 19 White M, Lepage S, Lavoie J et al. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure. J. Cardiac. Fail. 13(2), 86–94 (2007).
    • 20 McMurray JJ, Ostergren J, Swedberg K et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting enzyme inhibitors: the CHARM-Added trial. Lancet 362(9386), 767–771 (2003). •• Results of a large, multicenter study demonstrating the benefit of candesartan in patients with symptomatic heart failure.
    • 21 Hemmelgarn BR, McAlister FA, Grover S et al. The 2006 Canadian Hypertension Education Program recommendations for the management of hypertension: part I – blood pressure measurement, diagnosis and assessment of risk. Can. J. Cardiol. 22(7), 573–581 (2006).
    • 22 Lachance K, Barhdadi A, Mongrain I et al. PRKCB is associated with calcineurin inhibitor-induced renal dysfunction in heart transplant recipients. Pharmacogenet. Genomics 22(5), 336–343 (2012).
    • 23 Lemieux Perreault LP, Provost S, Legault MA, Barhdadi A, Dube MP. pyGenClean: efficient tool for genetic data clean up before association testing. Bioinformatics 29(13), 1704–1705 (2013).
    • 24 Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89(1), 82–93 (2011).
    • 25 Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 32(4), 361–369 (2008).
    • 26 Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007).
    • 27 Spiering W, Kroon AA, Fuss-Lejeune MM, Daemen MJ, de Leeuw PW. Angiotensin II sensitivity is associated with the angiotensin II type 1 receptor A(1166)C polymorphism in essential hypertensives on a high sodium diet. Hypertension 36(3), 411–416 (2000).
    • 28 Baudin B. Polymorphism in angiotensin II receptor genes and hypertension. Exp. Physiol. 90(3), 277–282 (2005).
    • 29 Haas U, Sczakiel G, Laufer SD. microRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure. RNA Biol. 9(6), 924–937 (2012).
    • 30 Sethupathy P, Borel C, Gagnebin M et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81(2), 405–413 (2007).
    • 31 Mialet Perez J, Rathz DA, Petrashevskaya NN et al. Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat. Med. 9(10), 1300–1305 (2003).
    • 32 Liggett SB, Mialet-Perez J, Thaneemit-Chen S et al. A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103(30), 11288–11293 (2006). •• Large pharmacogenomic substudy suggesting that the benefit of bucindolol is modulated by a genetic variant in the adrenergic system.
    • 33 Anand IS, Fisher LD, Chiang YT et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 107(9), 1278–1283 (2003).
    • 34 Daniels LB, Maisel AS. Natriuretic peptides. J. Am. Coll. Cardiol. 50(25), 2357–2368 (2007).
    • 35 de Denus S, Pharand C, Williamson DR. Brain natriuretic peptide in the management of heart failure: the versatile neurohormone. Chest 125(2), 652–668 (2004).
    • 36 Latini R, Masson S, Anand I et al. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure: the Valsartan Heart Failure Trial (Val-HeFT). Circulation 106(19), 2454–2458 (2002).
    • 37 van Veldhuisen DJ, Genth-Zotz S, Brouwer J et al. High- versus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J. Am. Coll. Cardiol. 32(7), 1811–1818 (1998).
    • 38 Riegger GAJ, Bouzo H, Petr P et al. Improvement in exercise tolerance and symptoms of congestive heart failure during treatment with candesartan cilexetil. Circulation 100(22), 2224–2230 (1999).
    • 39 Mitrovic V, Willenbrock R, Miric M et al. Acute and 3-month treatment effects of candesartan cilexetil on hemodynamics, neurohormones, and clinical symptoms in patients with congestive heart failure. Am. Heart J. 145(3), E14 (2003).
    • 40 McKelvie RS, Yusuf S, Pericak D et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100(10), 1056–1064 (1999).
    • 41 Cohn JN, Anand IS, Latini R, Masson S, Chiang YT, Glazer R. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial. Circulation 108(11), 1306–1309 (2003).
    • 42 Oemrawsingh RM, Akkerhuis KM, Van Vark LC et al. Individualized angiotensin-converting enzyme (ACE)-inhibitor therapy in stable coronary artery disease based on clinical and pharmacogenetic determinants: the PERindopril GENEtic (PERGENE) Risk Model. J. Am. Heart. Assoc. 5(3), e002688 (2016).
    • 43 van der Leeuw J, Oemrawsingh RM, van der Graaf Y et al. Prediction of absolute risk reduction of cardiovascular events with perindopril for individual patients with stable coronary artery disease – results from EUROPA. Int. J. Cardiol. 182, 194–199 (2015).
    • 44 Sprint Research Group; Wright JT Jr, Williamson JD et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373(22), 2103–2116 (2015).
    • 45 Thanassoulis G, Williams K, Ye K et al. Relations of change in plasma levels of LDL-C, non-HDL-C and apoB with risk reduction from statin therapy: a meta-analysis of randomized trials. J. Am. Heart Assoc. 3(2), e000759 (2014).
    • 46 McCullough PA, Duc P, Omland T et al. B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am. J. Kidney Dis. 41(3), 571–579 (2003).
    • 47 Anand IS, Rector TS, Kuskowski M, Thomas S, Holwerda NJ, Cohn JN. Effect of baseline and changes in systolic blood pressure over time on the effectiveness of valsartan in the Valsartan Heart Failure Trial. Circ. Heart Fail. 1(1), 34–42 (2008).
    • 48 Lesogor A, Cohn JN, Latini R et al. Interaction between baseline and early worsening of renal function and efficacy of renin-angiotensin-aldosterone system blockade in patients with heart failure: insights from the Val-HeFT study. Eur. J. Heart Fail. 15(11), 1236–1244 (2013).
    • 49 Young JB, Dunlap ME, Pfeffer MA et al. Mortality and morbidity reduction with candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM Low-Left Ventricular Ejection Fraction Trials. Circulation 110(17), 2618–2626 (2004).
    • 50 Zannad F, McMurray JJ, Krum H et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364(1), 11–21 (2011).
    • 51 McMurray JJ, Packer M, Desai AS et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371(11), 993–1004 (2014).