We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Possible approaches to CYP2C9-guided prescription of sulfonylureas in Russia

    Anna Mosikian

    *Author for correspondence:

    E-mail Address: mosikian.anna@gmail.com

    Department of Endocrinology, Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia

    ,
    Antonina Dolgorukova

    Department of Endocrinology, Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia

    &
    Alsu Zalevskaya

    Department of Endocrinology, Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia

    Published Online:https://doi.org/10.2217/pgs-2016-0121

    Aim: To evaluate a possible role of CYP2C9 genotyping for sulfonylureas (SUs) prescription in Russia. Materials & methods: We have collected the current data on correlation between SUs pharmacodynamics and CYP2C9 polymorphisms. We have evaluated the frequency of CYP2C9 polymorphisms in Russia by reviewing the literature published from 2004 to 2015 on Russian CYP2C9. Results: The genotype *1/*1, which confers risk for treatment failure, has a higher frequency (81.92%) in the non-Caucasians than that (64.92%) in the Caucasians. The Caucasians have a frequency (3.58%) of the poor metabolizers (*2/*2, *2/*3 and *3/*3) eight-times higher than that (0.44%) in the non-Caucasians, predisposing an increased risk of hypoglycemia. Conclusion: Considering the received data and the existed knowledge on CYP2C9 influence on SUs pharmacokinetics and pharmacodynamics, we propose a possible approach to CYP2C9-guided SUs prescription for Russians.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 World Health Organization. Global Health Estimates: deaths by cause, age, sex and country, 2000–2012. WHO, Geneva, Switzerland (2014).
    • 2 World Health Organization. Projections of mortality and causes of death, 2015 and 2030. www.who.int/healthinfo/global_burden_disease/projections/en/.
    • 3 Suntsov YuI, Bolotskaya LL, Maslova OV, Kazakov IV. Epidemiology of diabetes mellitus and prognosis of its prevalence in the Russian Federation. Saharnyj Diabet. 14(1), 15–18 (2011).
    • 4 Ringborg A, Cropet C, Jönsson B, Gagliardino JJ, Ramachandran A, Lindgren P. Resource use associated with Type 2 diabetes in Asia, Latin America, the Middle East and Africa: results from the International Diabetes Management Practices Study (IDMPS). Int. J. Clin. Pract. 63(7), 997–1007 (2009).
    • 5 Chan JC, Gagliardino JJ, Baik SH et al. Multifaceted determinants for achieving glycemic control: the International Diabetes Management Practice Study (IDMPS). Diabetes Care 32(2), 227–233 (2009).
    • 6 American Association of Clinical Endocrinologists (AACE) and American College of Endocrinology (ACE). AACE/ACE Comprehensive Type 2 diabetes management algorithm 2016. Endocr. Pract. 22, 84–113 (2016).
    • 7 Zhou K, Pedersen HK, Dawed AY, Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat. Rev. Endocrinol. 12(6), 337–346 (2016). •• The most recent and complete review on antidiabetic drug pharmacogenetics.
    • 8 Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics 12(8), 1161–1191 (2011).
    • 9 Kirchheiner J, Brockmoller J, Meineke I et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin. Pharmacol. Ther. 71(4), 286–296 (2002).
    • 10 Hu GX, Pan PP, Wang ZS et al. In vitro and in vivo characterization of 13 CYP2C9 allelic variants found in Chinese Han population. Drug Metab. Dispos. 43(4), 561–569 (2015).
    • 11 Dai DP, Wang SH, Geng PW, Hu GX, Cai JP. In vitro assessment of 36 CYP2C9 allelic isoforms found in the Chinese population on the metabolism of glimepiride. Basic Clin. Pharmacol. Toxicol. 114(4), 305–310 (2014).
    • 12 Niinuma Y, Saito T, Takahashi M et al. Functional characterization of 32 CYP2C9 allelic variants. Pharmacogenomics J. 14(2), 107–114 (2014).
    • 13 Kirchheiner J, Bauer S, Meineke I et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 12(2), 101–109 (2002).
    • 14 Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with Type 2 diabetes. Diabetes Res. Clin. Pract. 72(2), 148–154 (2006).
    • 15 Tan B, Zhang YF, Chen XY et al. The effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of glipizide in Chinese subjects. Eur. J. Clin. Pharmacol. 66(2), 145–151 (2010).
    • 16 Surendiran A, Pradhan SC, Agrawal A et al. Influence of CYP2C9 gene polymorphismus on response to glybenclamide in Type 2 diabetes mellitus patients. Eur. J. Clin. Pharmacol. 67(8), 797–801 (2011).
    • 17 Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin. Pharmacol. Ther. 73(3), 326–332 (2002).
    • 18 Lee CR, Pieper JA, Hinderliter AL, Blaisdell JA, Goldstein JA. Evaluation of cytochrome P4502C9 metabolic activity with tolbutamide in CYP2C9*1 heterozygotes. Clin. Pharmacol. Ther. 72(5), 562–571 (2002).
    • 19 Becker M, Visser L, Trienekens P, Hofman A, van Schaik R, Stricker B. Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in Type II diabetes mellitus. Clin. Pharmacol. Ther. 83(2), 288–292 (2008).
    • 20 Zhou K, Donnelly L, Burch L et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in Type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Therap. 87(1), 52–56 (2010). • The large population-based study including a sample of 1073 people for CYP2C9 testing.
    • 21 Edridge CL, Dunkley AJ, Bodicoat DH et al. Prevalence and incidence of hypoglycaemia in 532,542 people with Type 2 diabetes on oral therapies and insulin: a systematic review and meta-analysis of population based studies. PLoS ONE 10(6), e0126427 (2015).
    • 22 Ragia G, Petridis I, Tavridou A, Christakidis D, Manolopoulos VG. Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics 10(11), 1781–1787 (2009). • Shows correlation between *3 allele and hypoglycemia frequency in patients.
    • 23 Ragia G, Tavridou A, Elens L, van Schaik RH, Manolopoulos VG. CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 Type 2 diabetic patients treated with sulfonylureas. Exp. Clin. Endocrinol. Diabetes 122(1), 60–63 (2014).
    • 24 Holstein A, Plaschke A, Ptak M et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br. J. Clin. Pharmacol. 60(1), 103–106 (2005).
    • 25 Holstein A, Hahn M, Patzer O, Seeringer A, Kovacs P, Stingl J. Impact of clinical factors and CYP2C9 variants for the risk of severe sulfonylurea-induced hypoglycemia. Eur. J. Clin. Pharmacol. 67(5), 471–476 (2011).
    • 26 Céspedes-Garro C, Fricke-Galindo I, Naranjo ME et al. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin. Drug Metab. Toxicol. 11(12), 1893–1905 (2015). •• Unites data on 75 CYP2C9 polymorphism studies in 16 ethnicities.
    • 27 Dorado P, Beltrán LJ, Machín E et al. Losartan hydroxylation phenotype in an Ecuadorian population: influence of CYP2C9 genetic polymorphism, habits and gender. Pharmacogenomics 13(15), 1711–1717 (2012).
    • 28 Varshney E, Saha N, Tandon M, Shrivastava V, Ali S. Genotype-phenotype correlation of cytochrome P450 2C9 polymorphism in Indian National Capital region. Eur. J. Drug Metab. Pharmacokinet. 38(4), 275–282 (2013).
    • 29 Shao H, Ren XM, Liu NF et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics and pharmacodynamics of gliclazide in healthy Chinese Han volunteers. J. Clin. Pharm. Ther. 35(3), 351–360 (2010).
    • 30 Ren Q, Han X, Zhang S, Cai X, Ji L. Combined influence of genetic variants and gene–gene interaction on sulfonylurea efficacy in Type 2 diabetic patients. Exp. Clin. Endocrinol. Diabetes 124(3), 157–162 (2016).
    • 31 Shao H, Lu J, Xu YT, Zhan Y, Chen GM, Zhang HJ. Metabolic interaction potential between clopidogrel and sulfonylurea antidiabetic agents: effects on clopidogrel bioactivation. Pharmacology 97(1–2), 18–24 (2016).
    • 32 Harmsze AM, Van Werkum JW, Moral F et al. Sulfonylureas and on-clopidogrel platelet reactivity in Type 2 diabetes mellitus patients. Platelets 22(2), 98–102 (2011).
    • 33 Chen SZ, Pan PP, Wang SH et al. In vitro and in vivo drug–drug interaction of losartan and glimepiride in rats and its possible mechanism. Pharmacology 95(3–4), 133–138 (2015).
    • 34 Chen SZ, Pan PP, Shen LB et al. Drug–drug interaction of losartan and glimepiride metabolism by recombinant microsome CYP2C9*1, 2C9*3, 2C9*13, and 2C9*16 in vitro. Int. J. Clin. Pharmacol. Ther. 52(9), 732–738 (2014).
    • 35 Petrov VI, Rogova NV, Ledyaev YaM, Ozerov AA, Serdyukova DM. Farmacokinetic testing of CYP2C9 activity in Type 2 diabetes mellitus patients as a way to reduce frequency of adverse effects. Biomedicine 3(1), 113–115 (2010).
    • 36 Petrov VI, Rogova NV, Ledyaev YaM, Serdyukova DM. Influence of long-term therapy with sulfonylurea derivatives on the capacity of the hepatic CYP2C9 enzyme system of drug biotransformation in diabetic type II patients in the city of Volgograd. Vestnik VolGMU 2(34), 14–18 (2010). • Describes enzyme depletion during a long-term treatment.
    • 37 Lagishetty CV, Deng J, Lesko LJ, Rogers H, Pacanowski M, Schmidt S. How informative are drug-drug interactions of gene-drug interactions? J. Clin. Pharmacol. doi:10.1002/jcph.743 (2016) (Epub ahead of print). • Describes the impact of CYP2C19 of CYP2C9 activity.
    • 38 Koren S, Koren R, Bar-Chaim A et al. Any polymorphisms of CYP2C9 affects the biochemical profile of diabetic patients receiving glibenclamide. Clin. Med. Biochem. Open Access 1, 102 (2015).
    • 39 Type of metabolism depending on CYP2C9 genotype – PharmGKB guideline. www.pharmgkb.org/guideline/PA166122806.
    • 40 Human Cytochrome P450 (CYP) Allele Nomenclature for CYP2C9. www.cypalleles.ki.se/cyp2c9.htm.
    • 41 Sirotkina OV, Ulitina AS, Taraskina AE et al. CYP2C9*2 and CYP2C9*3 allele variants of CYP2C9 cytochrome gene in St. Petersburg population, and their clinical role in warfarin anticoagulant therapy. Rossijskij kardiologicheskij zhurnal 6(50), 47–50 (2004).
    • 42 Hardy–Weinberg Equilibrium Calculator. www.had2know.com/academics/hardy-weinberg-equilibrium-calculator-3-alleles.html.
    • 43 Tsarukyan AA, Baturin VA. Genetic polymorphism of the isoenzymes of cytochrome CYP2C9 in the ethnic groups from the Stavropol region. Kubanskij nauchnyj medicinskij vestnik 133(4), 181–183 (2012).
    • 44 Korchagina RP, Osipova LP, Vavilova NA, Voronina EN, Filipenko ML. Genetic polymorphism of drug-metabolizing cytochrome P450 2C9 in indigenous people populations of Northern Siberia. Sibirskij nauchnyj medicinskij zhurnal 31(6), 39–46 (2011).
    • 45 Dmitrenko DV, Shnayder NA, Nikolaeva TE et al. Ethnic aspects of carriage of CYP2C9 gene polymorphism in children and adolescents with epilepsy in eastern and northeastern Siberia. Modern Prob. Sci. Educ. 62(6), 1–9 (2015).
    • 46 Guzeva OV, Imyanitov EN. The clinical significance of the study of polymorphism of detoxification P450 CYP2C9 and CYP2C19 in children with epilepsy. Jepilepsija i paroksizmal'nye sostojanija 5(3), 17–23 (2013).
    • 47 Tsvetovskaya GA, Chikova ED, Koh NV, Lifshits GI, Morozov VV, Novikova YaV. Modern methods of laboratory diagnostics in prevention of recurrent thrombosis. Fundamental'nye issledovanija 10(2), 353–355 (2012).
    • 48 Gra O, Mityaeva O, Berdichevets I et al. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet. Test. Mol. Biomarkers 14(3), 329–342 (2010).
    • 49 National Structure of Russia. www.statdata.ru/nacionalnyj-sostav-rossii.
    • 50 Emigration data for the Russians. www.migrationpolicycentre.eu/docs/migration_profiles/Russia.pdf.
    • 51 Covvey JR, Lewis DA. Glimepiride-induced hypoglycemia with ciprofloxacin, metronidazole, and acute kidney injury. Hosp. Pharm. 45(12), 934–938 (2010).
    • 52 Kim YM, Yoo SH, Kang RY et al. Identifying drugs needing pharmacogenetic monitoring in a Korean hospital. Am. J. Health. Syst. Pharm. 64(2), 166–175 (2007).