We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenetic considerations in the treatment of HIV

    Vanessa S Mattevi

    *Author for correspondence:

    E-mail Address: vmattevi@ufcspa.edu.br

    Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil

    &
    Carmela FS Tagliari

    Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil

    Published Online:https://doi.org/10.2217/pgs-2016-0097

    After the introduction of highly active antiretroviral therapy in the 1990s, the perception of the diagnosis of HIV infection gradually shifted from a ‘death sentence’ to a chronic disease requiring long-term treatment. The host genetic variability has been shown to play a relevant role in both antiretroviral drugs bioavailability and adverse effects susceptibility. Knowledge about pharmacogenetics role in HIV infection treatment has largely increased over the last years, and is reviewed in the present report, as well as future perspectives for the inclusion of pharmacogenetics information in the directing of HIV infection treatment.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Laskey SB, Siliciano RF. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat. Rev. Microbiol. 12(11), 772–780 (2014).
    • 2 Pau AK, George JM. Antiretroviral therapy: current drugs. Infect. Dis. Clin. North Am. 28(3), 371–402 (2014). • Detailed description of drugs, their mechanism of action and side effects.
    • 3 Tozzi V. Pharmacogenetics of antiretrovirals. Antiviral Res. 85(1), 190–200 (2010).
    • 4 Whirl-Carrillo M, McDonagh EM, Hebert JM et al. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92(4), 414–417 (2012). •• Database that gathers information about pharmacogenes, drugs, pathways and genetic variations.
    • 5 Günthard HF, Aberg JA, Eron JJ et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA 312(4), 410–425 (2014).
    • 6 Günthard HF, Saag MS, Benson CA et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society-USA Panel. JAMA 316(2), 191–210 (2016).
    • 7 World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach (2016). www.who.int/hiv/pub/arv/arv-2016/en/. • More recent guidelines for HIV infection treatment.
    • 8 Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentré F, Taburet AM. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin. Pharmacokinet. 49(1), 17–45 (2010).
    • 9 Bhatti AB, Usman M, Kandi V. Current scenario of HIV/AIDS, treatment options, and major challenges with compliance to antiretroviral therapy. Cureus 8(3), e515 (2016).
    • 10 Clutter DS, Jordan MR, Bertagnolio S, Shafer RW. HIV-1 drug resistance and resistance testing. Infect. Genet. Evol. doi:10.1016/j.meegid.2016.08.031 (2016) (Epub ahead of print). •• Complete revision about HIV drug resistance mutations.
    • 11 Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol. Rev. 64(3), 803–833 (2012).
    • 12 Hetherington S, Hughes AR, Mosteller M et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359(9312), 1121–1122 (2002).
    • 13 Barreiro P, Fernández-Montero JV, de Mendoza C, Labarga P, Soriano V. Pharmacogenetics of antiretroviral therapy. Expert Opin. Drug Metab. Toxicol. 10(8), 1119–1130 (2014).
    • 14 Asensi V, Collazos J, Valle-Garay E. Can antiretroviral therapy be tailored to each human immunodeficiency virus-infected individual? Role of pharmacogenomics. World J. Virol. 4(3), 169–177 (2015).
    • 15 Aceti A, Gianserra L, Lambiase L, Pennica A, Teti E. Pharmacogenetics as a tool to tailor antiretroviral therapy: a review. World J. Virol. 4(3), 198–208 (2015).
    • 16 Haas DW, Tarr PE. Perspectives on pharmacogenomics of antiretroviral medications and HIV-associated comorbidities. Curr. Opin. HIV AIDS 10(2), 116–122 (2015).
    • 17 Lakhman SS, Ma Q, Morse GD. Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics 10(8), 1323–1339 (2009).
    • 18 Zanger UM, Klein K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet. 4, 24 (2013). • Summarizes recent advances on the functional and clinical significance of CYP2B6 and its genetic polymorphism.
    • 19 Thorn CF, Lamba JK, Lamba V, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP2B6. Pharmacogenet. Genomics 20(8), 520–523 (2010).
    • 20 Amirimani B, Ning B, Deitz AC, Weber BL, Kadlubar FF, Rebbeck TR. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen. 42(4), 299–305 (2003).
    • 21 Haas DW, Ribaudo HJ, Kim RB et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18(18), 2391–2400 (2004).
    • 22 Haas DW, Smeaton LM, Shafer RW et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult Aids Clinical Trials Group study. J. Infect. Dis. 192(11), 1931–1942 (2005).
    • 23 Haas DW, Bartlett JA, Andersen JW et al. Pharmacogenetics of nevirapine-associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clin. Infect. Dis. 43(6), 783–786 (2006).
    • 24 Ciccacci C, Borgiani P, Ceffa S et al. Nevirapine-induced hepatotoxicity and pharmacogenetics: a retrospective study in a population from Mozambique. Pharmacogenomics 11(1), 23–31 (2010).
    • 25 Ciccacci C, Di Fusco D, Marazzi MC et al. Association between CYP2B6 polymorphisms and nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur. J. Clin. Pharmacol. 69(11), 1909–1916 (2013).
    • 26 Swart M, Skelton M, Ren Y, Smith P, Takuva S, Dandara C. High predictive value of CYP2B6 SNPs for steady-state plasma efavirenz levels in South African HIV/AIDS patients. Pharmacogenet. Genomics 23(8), 415–427 (2013).
    • 27 Haas DW, Severe P, Jean Juste MA, Pape JW, Fitzgerald DW. Functional CYP2B6 variants and virologic response to an efavirenz-containing regimen in Port-au-Prince, Haiti. J. Antimicrob. Chemother. 69(8), 2187–2190 (2014).
    • 28 Sukasem C, Manosuthi W, Koomdee N et al. Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism. Infection 42(3), 469–474 (2014).
    • 29 Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 11(4), 274–286 (2011).
    • 30 Olagunju A, Schipani A, Siccardi M et al. CYP3A4*22 (c.522–191 C>T; rs35599367) is associated with lopinavir pharmacokinetics in HIV-positive adults. Pharmacogenet. Genomics 24(9), 459–463 (2014).
    • 31 Swart M, Dandara C. Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance. Front. Genet. 5, 167 (2014).
    • 32 Haas DW, Kwara A, Richardson DM et al. Secondary metabolism pathway polymorphisms and plasma efavirenz concentrations in HIV-infected adults with CYP2B6 slow metabolizer genotypes. J. Antimicrob. Chemother. 69(8), 2175–2182 (2014).
    • 33 Sukasem C, Chamnanphon M, Koomdee N et al. Pharmacogenetics and clinical biomarkers for subtherapeutic plasma efavirenz concentration in HIV-1 infected Thai adults. Drug Metab. Pharmacokinet. 29(4), 289–295 (2014).
    • 34 Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab. Dispos. 33(11), 1729–1739 (2005).
    • 35 Lankisch TO, Moebius U, Wehmeier M et al. Gilbert's disease and atazanavir: from phenotype to UDP-glucuronosyltransferase haplotype. Hepatology 44(5), 1324–1332 (2006).
    • 36 Park WB, Choe PG, Song KH et al. Genetic factors influencing severe atazanavir-associated hyperbilirubinemia in a population with low UDP-glucuronosyltransferase 1A1*28 allele frequency. Clin. Infect. Dis. 51(1), 101–106 (2010).
    • 37 Ferraris L, Viganò O, Peri A et al. Switching to unboosted atazanavir reduces bilirubin and triglycerides without compromising treatment efficacy in UGT1A1*28 polymorphism carriers. J. Antimicrob. Chemother. 67(9), 2236–2242 (2012).
    • 38 Rodríguez-Nóvoa S, Martín-Carbonero L, Barreiro P et al. Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia. AIDS 21(1), 41–46 (2007).
    • 39 Turatti L, Sprinz E, Lazzaretti RK et al. Short communication: UGT1A1*28 variant allele is a predictor of severe hyperbilirubinemia in HIV-infected patients on HAART in southern Brazil. AIDS Res. Hum. Retroviruses 28(9), 1015–1018 (2012).
    • 40 Schackman BR, Haas DW, Becker JE et al. Cost–effectiveness analysis of UGT1A1 genetic testing to inform antiretroviral prescribing in HIV disease. Antivir. Ther. 18(3), 399–408 (2013).
    • 41 Nigam SK. What do drug transporters really do? Nat. Rev. Drug Discov. 14(1), 29–44 (2015).
    • 42 Rodriguez-Novoa S, Labarga P, Soriano V. Pharmacogenetics of tenofovir treatment. Pharmacogenomics 10(10), 1675–1685 (2009).
    • 43 Marzocchetti A, Schwarz J, Di Giambenedetto S et al. The effect of polymorphisms in candidate genes on the long-term risk of lipodystrophy and dyslipidemia in HIV-infected white patients starting antiretroviral therapy. AIDS Res. Hum. Retroviruses 27(12), 1299–1309 (2011).
    • 44 Coelho AV, Silva SP, de Alencar LC et al. ABCB1 and ABCC1 variants associated with virological failure of first-line protease inhibitors antiretroviral regimens in Northeast Brazil patients. J. Clin. Pharmacol. 53(12), 1286–1293 (2013).
    • 45 Manosuthi W, Sukasem C, Thongyen S, Nilkamhang S, Sungkanuparph S. ABCC2*1C and plasma tenofovir concentration are correlated to decreased glomerular filtration rate in patients receiving a tenofovir-containing antiretroviral regimen. J. Antimicrob. Chemother. 69(8), 2195–2201 (2014).
    • 46 da Rocha IM, Gasparotto AS, Lazzaretti RK, Notti RK, Sprinz E, Mattevi VS. Polymorphisms associated with renal adverse effects of antiretroviral therapy in a Southern Brazilian HIV cohort. Pharmacogenet. Genomics 25(11), 541–547 (2015).
    • 47 Wanga V, Venuto C, Morse GD et al. Genomewide association study of tenofovir pharmacokinetics and creatinine clearance in AIDS Clinical Trials Group protocol A5202. Pharmacogenet. Genomics 25(9), 450–461 (2015).
    • 48 Rungtivasuwan K, Avihingsanon A, Thammajaruk N et al. Influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. Antimicrob. Agents Chemother. 59(6), 3240–3245 (2015).
    • 49 Dahlin A, Wittwer M, de la Cruz M et al. A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet. Genomics 25(2), 82–92 (2015).
    • 50 Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J. Infect. Dis. 204(1), 145–153 (2011).
    • 51 Liptrott NJ, Pushpakom S, Wyen C et al. Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet. Genomics 22(1), 10–19 (2012).
    • 52 Phillips E, Bartlett JA, Sanne I et al. Associations between HLA-DRB1*0102, HLA-B*5801, and hepatotoxicity during initiation of nevirapine-containing regimens in South Africa. J. Acquir. Immune Defic. Syndr. 62(2), e55–e57 (2013).
    • 53 Martin AM, Nolan D, James I et al. Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 19(1), 97–99 (2005).
    • 54 Littera R, Carcassi C, Masala A et al. HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 20(12), 1621–1626 (2006).
    • 55 Gatanaga H, Yazaki H, Tanuma J et al. HLA-Cw8 primarily associated with hypersensitivity to nevirapine. AIDS 21(2), 264–265 (2007).
    • 56 Finkelstein JL, Gala P, Rochford R, Glesby MJ, Mehta S. HIV/AIDS and lipodystrophy: implications for clinical management in resource-limited settings. J. Int. AIDS Soc. 18, 19033 (2015).
    • 57 Maher B, Alfirevic A, Vilar FJ, Wilkins EG, Park BK, Pirmohamed M. TNF-alpha promoter region gene polymorphisms in HIV-positive patients with lipodystrophy. AIDS 16(15), 2013–2018 (2002).
    • 58 Tarr PE, Taffé P, Bleiber G et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J. Infect. Dis. 191(9), 1419–1426 (2005).
    • 59 Arnedo M, Taffé P, Sahli R et al. Contribution of 20 single nucleotide polymorphisms of 13 genes to dyslipidemia associated with antiretroviral therapy. Pharmacogenet. Genomics 17(9), 755–764 (2007).
    • 60 Mahajan SD, Gaekwad A, Pawar J et al. Cardiac morbidity in an HIV-1 lipodystrophy patient cohort expressing the TNF-α-238 G/A single nucleotide gene polymorphism. Curr. HIV Res. 13(2), 98–108 (2015).
    • 61 Chang SY, Ko WS, Kao JT et al. Association of single-nucleotide polymorphism 3 and c.553G>T of APOA5 with hypertriglyceridemia after treatment with highly active antiretroviral therapy containing protease inhibitors in HIV-infected individuals in Taiwan. Clin. Infect. Dis. 48(6), 832–835 (2009).
    • 62 Lazzaretti RK, Gasparotto AS, Sassi MG et al. Genetic markers associated to dyslipidemia in HIV-infected individuals on HAART. ScientificWorldJournal 2013, 608415 (2013).
    • 63 Egaña-Gorroño L, Martínez E, Cormand B, Escribà T, Gatell J, Arnedo M. Impact of genetic factors on dyslipidemia in HIV-infected patients starting antiretroviral therapy. AIDS 27(4), 529–538 (2013).
    • 64 Rotger M, Bayard C, Taffé P et al. Contribution of genome-wide significant single-nucleotide polymorphisms and antiretroviral therapy to dyslipidemia in HIV-infected individuals: a longitudinal study. Circ. Cardiovasc. Genet. 2(6), 621–628 (2009).
    • 65 Guardiola M, Echeverria P, González M et al. Polymorphisms in LPL, CETP, and HL protect HIV-infected patients from atherogenic dyslipidemia in an allele-dose-dependent manner. AIDS Res. Hum. Retroviruses 31(9), 882–888 (2015).
    • 66 Nadel J, Holloway CJ. Screening and risk assessment for coronary artery disease in HIV infection: an unmet need. HIV Med. doi:10.1111/hiv.12422 (2016) (Epub ahead of print).
    • 67 Willig AL, Overton ET. Metabolic complications and glucose metabolism in HIV infection: a review of the evidence. Curr. HIV/AIDS Rep. 13(5), 289–296 (2016).
    • 68 Hart AB, Samuels DC, Hulgan T. The other genome: a systematic review of studies of mitochondrial DNA haplogroups and outcomes of HIV infection and antiretroviral therapy. AIDS Rev. 15(4), 213–220 (2013). • Summarizes the published literature on associations between mtDNA haplogroups and clinical outcomes in populations of European and African descent.
    • 69 Hulgan T, Stein JH, Cotter BR et al. Mitochondrial DNA variation and changes in adiponectin and endothelial function in HIV-infected adults after antiretroviral therapy initiation. AIDS Res. Hum. Retroviruses 29(10), 1293–1299 (2013).
    • 70 Trinca JR, Sprinz E, Lazzaretti RK et al. SNPs in the APM1 gene promoter are associated with adiponectin levels in HIV-infected individuals receiving HAART. J. Acquir. Immune Defic. Syndr. 55(3), 299–305 (2010).
    • 71 Castilhos JK, Sprinz E, Lazzaretti RK, Kuhmmer R, Mattevi VS. Polymorphisms in adiponectin receptor genes are associated with lipodystrophy-related phenotypes in HIV-infected patients receiving antiretroviral therapy. HIV Med. 16(8), 494–501 (2015).
    • 72 Brumme ZL, Dong WW, Chan KJ et al. Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS 17(2), 201–208 (2003).
    • 73 Gasparotto AS, Sprinz E, Lazzaretti RK et al. Genetic polymorphisms in estrogen receptors and sexual dimorphism in fat redistribution in HIV-infected patients on HAART. Aids 26(1), 19–26 (2012).
    • 74 Chastain DB, King TS, Stover KR. Infectious and non-infectious etiologies of cardiovascular disease in human immunodeficiency virus infection. Open AIDS J. 10, 113–126 (2016).
    • 75 Samineni D, Desai PB, Sallans L, Fichtenbaum CJ. Steady-state pharmacokinetic interactions of darunavir/ritonavir with lipid-lowering agent rosuvastatin. J. Clin. Pharmacol. 52(6), 922–931 (2012).
    • 76 Romaine SP, Bailey KM, Hall AS, Balmforth AJ. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J. 10(1), 1–11 (2010).
    • 77 Aquilante CL, Kiser JJ, Anderson PL et al. Influence of SLCO1B1 polymorphisms on the drug–drug interaction between darunavir/ritonavir and pravastatin. J. Clin. Pharmacol. 52(11), 1725–1738 (2012).
    • 78 Cohen K, Grant A, Dandara C et al. Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516G>T polymorphism on efavirenz concentrations in adults in South Africa. Antivir. Ther. 14(5), 687–695 (2009).
    • 79 Manosuthi W, Sukasem C, Lueangniyomkul A et al. Impact of pharmacogenetic markers of CYP2B6, clinical factors, and drug–drug interaction on efavirenz concentrations in HIV/tuberculosis-coinfected patients. Antimicrob. Agents Chemother. 57(2), 1019–1024 (2013).
    • 80 Bienvenu E, Swart M, Dandara C, Ashton M. The role of genetic polymorphisms in cytochrome P450 and effects of tuberculosis co-treatment on the predictive value of CYP2B6 SNPs and on efavirenz plasma levels in adult HIV patients. Antiviral Res. 102, 44–53 (2014).
    • 81 Ngaimisi E, Mugusi S, Minzi O et al. Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis. Clin. Pharmacol. Ther. 90(3), 406–413 (2011).
    • 82 Lee KY, Lin SW, Sun HY et al. Therapeutic drug monitoring and pharmacogenetic study of HIV-infected ethnic Chinese receiving efavirenz-containing antiretroviral therapy with or without rifampicin-based anti-tuberculous therapy. PLoS ONE 9(2), e88497 (2014).
    • 83 Kwara A, Lartey M, Sagoe KW, Court MH. Paradoxically elevated efavirenz concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on rifampin-containing antituberculous therapy. AIDS 25(3), 388–390 (2011).
    • 84 Bertrand J, Verstuyft C, Chou M et al. Dependence of efavirenz- and rifampicin–isoniazid-based antituberculosis treatment drug–drug interaction on CYP2B6 and NAT2 genetic polymorphisms: ANRS 12154 study in Cambodia. J. Infect. Dis. 209(3), 399–408 (2014).
    • 85 Chantarangsu S, Mushiroda T, Mahasirimongkol S et al. Genome-wide association study identifies variations in 6p21.3 associated with nevirapine-induced rash. Clin. Infect. Dis. 53(4), 341–348 (2011).
    • 86 Holzinger ER, Grady B, Ritchie MD et al. Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet. Genomics 22(12), 858–867 (2012).
    • 87 Leger PD, Johnson DH, Robbins GK et al. Genome-wide association study of peripheral neuropathy with D-drug-containing regimens in AIDS Clinical Trials Group protocol 384. J. Neurovirol. 20(3), 304–308 (2014).
    • 88 Johnson DH, Venuto C, Ritchie MD et al. Genomewide association study of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202. Pharmacogenet. Genomics 24(4), 195–203 (2014).
    • 89 Lehmann DS, Ribaudo HJ, Daar ES et al. Genome-wide association study of virologic response with efavirenz-containing or abacavir-containing regimens in AIDS clinical trials group protocols. Pharmacogenet. Genomics 25(2), 51–59 (2015).
    • 90 Moore CB, Verma A, Pendergrass S et al. Phenome-wide association study relating pretreatment laboratory parameters with human genetic variants in AIDS clinical trials group protocols. Open Forum Infect. Dis. 2(1), ofu113 (2015). • Defines properties and principles of phenome-wide association studies and discusses their potential applications.
    • 91 Schackman BR, Scott CA, Walensky RP, Losina E, Freedberg KA, Sax PE. The cost–effectiveness of HLA-B*5701 genetic screening to guide initial antiretroviral therapy for HIV. AIDS 22(15), 2025–2033 (2008).
    • 92 Schackman BR, Haas DW, Park SS, Li XC, Freedberg KA. Cost–effectiveness of CYP2B6 genotyping to optimize efavirenz dosing in HIV clinical practice. Pharmacogenomics 16(18), 2007–2018 (2015). •• Exemplifies cost–effectiveness studies.