We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Leveraging nanotechnology for enrichment of circulating tumor cells in vivo

    Jing Shang

    Department of Bioengineering, University of Washington, Seattle, WA 98195, USA

    &
    Xiaohu Gao

    *Author for correspondence:

    E-mail Address: xgao@uw.edu

    Department of Bioengineering, University of Washington, Seattle, WA 98195, USA

    Published Online:https://doi.org/10.2217/nnm.15.99
    Free first page

    References

    • 1 Yoon HJ, Kozminsky M, Nagrath S. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano 8(3), 1995–2017 (2014).
    • 2 Alix-Panabieres C, Pantel K. Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14(1), 57–62 (2014).
    • 3 Alix-Panabieres C, Pantel K. Opinion challenges in circulating tumour cell research. Nat. Rev. Cancer 14(9), 623–631 (2014).
    • 4 Zrazhevskiy P, True LD, Gao X. Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nat. Protoc. 8(10), 1852–1869 (2013).
    • 5 Junker JP, Van Oudenaarden A. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell 157(1), 8–11 (2014).
    • 6 Powell AA, Talasaz AH, Zhang H et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7(5), e33788 (2012).
    • 7 Fischer JC, Niederacher D, Topp SA et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110(41), 16580–16585 (2013).
    • 8 Crystal AS, Shaw AT, Sequist LV et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346(6216), 1480–1486 (2014).
    • 9 Baccelli I, Schneeweiss A, Riethdorf S et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31(6), 539–544 (2013).
    • 10 Hodgkinson CL, Morrow CJ, Li Y et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20(8), 897–903 (2014).
    • 11 Yu M, Bardia A, Aceto N et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193), 216–220 (2014).
    • 12 Saucedo-Zeni N, Mewes S, Niestroj R et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41(4), 1241–1250 (2012).
    • 13 Eifler RL, Lind J, Falkenhagen D, Weber V, Fischer MB, Zeillinger R. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept. Cytometry B Clin. Cytom. 80(2), 100–111 (2011).
    • 14 Wang LX, Asghar W, Demirci U, Wan Y. Nanostructured substrates for isolation of circulating tumor cells. Nano Today 8(4), 374–387 (2013).
    • 15 Zhang N, Deng Y, Tai Q et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 24(20), 2756–2760 (2012).
    • 16 Wang S, Wang H, Jiao J et al. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem. Int. Ed. Engl. 48(47), 8970–8973 (2009).
    • 17 Wang C, Ye M, Cheng L et al. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 54, 55–62 (2015).
    • 18 Wang S, Liu K, Liu J et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. Engl. 50(13), 3084–3088 (2011).
    • 19 Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang LL, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4(12), 855–860 (2009).
    • 20 Hu XG, Wei CW, Xia JJ, Pelivanov I, O'Donnell M, Gao XH. Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto–optical coupled nanoparticles. Small 9(12), 2046–2052 (2013).