We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs

Rui Yin

Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China

Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA

Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

,
Tanupriya Agrawal

Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA

Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

,
Usman Khan

Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA

Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

,
Gaurav K Gupta

Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA

Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

,
Vikrant Rai

Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461

,
Ying-Ying Huang

Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA

Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

&
Michael R Hamblin

*Author for correspondence:

E-mail Address: Hamblin@helix.mgh.harvard.edu

Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA

Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA

Published Online:https://doi.org/10.2217/nnm.15.67

The relentless advance of drug-resistance among pathogenic microbes, mandates a search for alternative approaches that will not cause resistance. Photodynamic inactivation (PDI) involves the combination of nontoxic dyes with harmless visible light to produce reactive oxygen species that can selectively kill microbial cells. PDI can be broad-spectrum in nature and can also destroy microbial cells in biofilms. Many different kinds of nanoparticles have been studied to potentiate antimicrobial PDI by improving photosensitizer solubility, photochemistry, photophysics and targeting. This review will cover photocatalytic disinfection with titania nanoparticles, carbon nanomaterials (fullerenes, carbon nanotubes and graphene), liposomes and polymeric nanoparticles. Natural polymers (chitosan and cellulose), gold and silver plasmonic nanoparticles, mesoporous silica, magnetic and upconverting nanoparticles have all been used for PDI.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1 Guyer B, Freedman MA, Strobino DM, Sondik EJ. Annual summary of vital statistics: trends in the health of Americans during the 20th century. Pediatrics 106(6), 1307–1317 (2000).
  • 2 Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N. Engl. J. Med. 366(5), 454–461 (2012).
  • 3 Youngblood WJ, Gryko DT, Lammi RK, Bocian DF, Holten D, Lindsey JS. Glaser-mediated synthesis and photophysical characterization of diphenylbutadiyne-linked porphyrin dyads. J. Org. Chem. 67(7), 2111–2117 (2002).
  • 4 Smith R, Coast J. The true cost of antimicrobial resistance. Br. Med. J. 346, f1493 (2013).
  • 5 Kraus CN. Low hanging fruit in infectious disease drug development. Curr. Opin. Microbiol. 11(5), 434–438 (2008).
  • 6 Munoz-Price LS, Poirel L, Bonomo RA et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13(9), 785–796 (2013).
  • 7 Yoneyama H, Katsumata R. Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci. Biotechnol. Biochem. 70(5), 1060–1075 (2006).
  • 8 Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
  • 9 Maisch T. Anti-microbial photodynamic therapy: useful in the future? Lasers Med. Sci. 22(2), 83–91 (2007).
  • 10 Maisch T, Hackbarth S, Regensburger J et al. Photodynamic inactivation of multi-resistant bacteria (PIB) – a new approach to treat superficial infections in the 21st century. J. Dtsch Dermatol. Ges. 9(5), 360–366 (2011).
  • 11 Bush K, Courvalin P, Dantas G et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 9(12), 894–896 (2011).•• Influential review highlighting the growing danger of microbial drug resistance.
  • 12 Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim. Biophys. Acta 1704(2), 59–86 (2004).
  • 13 Johnson GA, Ellis EA, Kim H, Muthukrishnan N, Snavely T, Pellois JP. Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK)2. PLoS ONE 9(3), e91220 (2014).
  • 14 Pereira MA, Faustino MA, Tome JP et al. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem. Photobiol. Sci. 13(4), 680–690 (2014).
  • 15 Malik Z, Hanania J, Nitzan Y. Bactericidal effects of photoactivated porphyrins – an alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B 5(3–4), 281–293 (1990).
  • 16 Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown ST. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J. Photochem. Photobiol. B 32(3), 159–164 (1996).• Paper highlighting the importance of cationic charges in efficient photosensitizers to kill Gram-negative bacteria.
  • 17 Malik Z, Ladan H, Nitzan Y. Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J. Photochem. Photobiol. B 14(3), 262–266 (1992).•• One of the first papers highlighting the difficulty faced by attempts to use photosensitizers normally used to kill cancer cells, to kill Gram-negative bacteria.
  • 18 Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J. Appl. Microbiol. 92(Suppl.), S46–S54 (2002).
  • 19 Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob. Agents Chemother. 44(3), 522–527 (2000).
  • 20 Nitzan Y, Gutterman M, Malik Z, Ehrenberg B. Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem. Photobiol. 55(1), 89–96 (1992).
  • 21 Valduga G, Bertoloni G, Reddi E, Jori G. Effect of extracellularly generated singlet oxygen on Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. B 21(1), 81–86 (1993).
  • 22 Nishiyama N, Nakagishi Y, Morimoto Y et al. Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J. Control. Release 133(3), 245–251 (2009).
  • 23 Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108(1), 1–35 (1997).
  • 24 Hashimoto K. TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (Pt 8261) (2005).
  • 25 Wong CC, Chu W. The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions. Environ. Sci. Technol. 37(10), 2310–2316 (2003).
  • 26 Spesia MB, Milanesio ME, Durantini EN. Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C60 derivatives. Eur. J. Med. Chem. 43(4), 853–861 (2008).
  • 27 Jori G, Brown SB. Photosensitized inactivation of microorganisms. Photochem. Photobiol. Sci. 3(5), 403–405 (2004).
  • 28 Soncin M, Fabris C, Busetti A et al. Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochem. Photobiol. Sci. 1(10), 815–819 (2002).
  • 29 Lauro FM, Pretto P, Covolo L, Jori G, Bertoloni G. Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates. Photochem. Photobiol. Sci. 1(7), 468–470 (2002).
  • 30 Huang L, Terakawa M, Zhiyentayev T et al. Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials. Nanomedicine 6(3), 442–452 (2010).
  • 31 Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M. Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem. Photobiol. Sci. 10(5), 712–720 (2011).
  • 32 Felgentrager A, Maisch T, Spath A, Schroder JA, Baumler W. Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus. Phys. Chem. Chem. Phys. 16(38), 20598–20607 (2014).
  • 33 Zerdin K, Scully AD. Inactivation of food-borne spoilage and pathogenic micro-organisms on the surface of a photoactive polymer. Photochem. Photobiol. 86(5), 1109–1117 (2010).
  • 34 Bezman SA, Burtis PA, Izod TP, Thayer MA. Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads. Photochem. Photobiol. 28(3), 325–329 (1978).
  • 35 Kendall CA, Morton CA. Photodynamic therapy for the treatment of skin disease. Technol. Cancer Res. Treat. 2(4), 283–288 (2003).
  • 36 Moan J, Peng Q, Sorensen R, Iani V, Nesland JM. The biophysical foundations of photodynamic therapy. Endoscopy 30(4), 387–391 (1998).
  • 37 Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 8(1), 14–29 (2011).
  • 38 Derycke AS, De Witte PA. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 56(1), 17–30 (2004).
  • 39 Zhang GD, Harada A, Nishiyama N et al. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J. Control. Release 93(2), 141–150 (2003).
  • 40 Van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev. 56(1), 9–16 (2004).
  • 41 Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem. Photobiol. 83(6), 1505–1512 (2007).
  • 42 Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv. Drug Deliv. Rev. 61(4), 327–338 (2009).
  • 43 Narsireddy A, Vijayashree K, Irudayaraj J, Manorama SV, Rao NM. Targeted in vivo photodynamic therapy with epidermal growth factor receptor-specific peptide linked nanoparticles. Int. J. Pharm. 471(1–2), 421–429 (2014).
  • 44 Yang Y, Hu Y, Du H, Wang H. Intracellular gold nanoparticle aggregation and their potential applications in photodynamic therapy. Chem. Commun. (Camb.) 50(55), 7287–7290 (2014).
  • 45 Ricci-Junior E, Marchetti JM. Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J. Microencapsul. 23(5), 523–538 (2006).
  • 46 Roy I, Ohulchanskyy TY, Pudavar HE et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 125(26), 7860–7865 (2003).
  • 47 Wang L, Shi J, Liu R et al. Photodynamic effect of functionalized single-walled carbon nanotubes: a potential sensitizer for photodynamic therapy. Nanoscale 6(9), 4642–4651 (2014).
  • 48 Xing Y, Dai L. Nanodiamonds for nanomedicine. Nanomedicine (Lond.) 4(2), 207–218 (2009).
  • 49 Zhang XQ, Chen M, Lam R, Xu X, Osawa E, Ho D. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3(9), 2609–2616 (2009).
  • 50 Griffiths G, Nystrom B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat. Rev. Microbiol. 8(11), 827–834 (2010).
  • 51 Kateb B, Chiu K, Black KL et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 54(Suppl. 1), S106–S124 (2011).
  • 52 Casas A, Battah S, Di Venosa G et al. Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. J. Control. Release 135(2), 136–143 (2009).
  • 53 Alarcon E, Edwards AM, Aspee A, Borsarelli CD, Lissi EA. Photophysics and photochemistry of rose bengal bound to human serum albumin. Photochem. Photobiol. Sci. 8(7), 933–943 (2009).
  • 54 Guo Y, Rogelj S, Zhang P. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of Gram-positive bacteria. Nanotechnology 21(6), 065102 (2010).
  • 55 Tang W, Xu H, Kopelman R, Philbert MA. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol. 81(2), 242–249 (2005).
  • 56 Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol. Pharm. 5(5), 795–807 (2008).
  • 57 Suppan P. Chemistry and Light. Royal Society of Chemistry, London, UK, 295 (1994).
  • 58 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972).
  • 59 Herrmann JM. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53(1), 115–129 (1999).
  • 60 Kashyout AB, Soliman M, El-Haleem DA. Disinfection of bacterial suspensions by photocatalytic oxidation using TiO2 nanoparticles under ultraviolet illumination. Alexandria Eng. 45(3), 367–371 (2006).
  • 61 Cheng CL, Sun DS, Chu WC et al. The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J. Biomed. Sci. 16, 7 (2009).
  • 62 Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A. Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. Electrochem. Commun. 5(9), 793–796 (2003).
  • 63 Vohra A, Goswami DY, Deshpande DA, Block SS. Enhanced photocatalytic disinfection of indoor air. Appl Catalysis B Environ 64(1–2), 57–65 (2006).
  • 64 Sapkota A, Dutta J. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology 22(21), 215703 (2011).
  • 65 Rodriguez J. Solar water disinfection studies with supported TiO2 and polymer-supported R(II) sensitizer in a compound parabolic collector. J. Sol. Energy Eng. Trans ASME 132(1), 0110011–0110015 (2007).
  • 66 Ditta IB, Steele A, Liptrot C et al. Photocatalytic antimicrobial activity of thin surface films of TiO(2), CuO and TiO(2)/CuO dual layers on Escherichia coli and bacteriophage T4. Appl. Microbiol. Biotechnol. 79(1), 127–133 (2008).
  • 67 Sato T, Koizumi Y, Taya M. Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate. Biochem. Eng. J. 14(2), 149–152 (2003).
  • 68 Kuhn KP, Chaberny IF, Massholder K et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53(1), 71–77 (2003).
  • 69 Luo L, Miao L, Tanemura S, Tanemura M. Photocatalytic sterilization of TiO2 films coated on Al fiber. Mater. Sci. Eng. B 148(1–3), 183–186 (2008).
  • 70 Yao Y, Ohko Y, Sekiguchi Y, Fujishima A, Kubota Y. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J. Biomed. Mater. Res. B Appl. Biomater. 85(2), 453–460 (2008).
  • 71 Block SS, Seng VP, Goswami DW. Chemically enhanced sunlight for killing bacteria. J. Sol. Energy Eng. 119(1), 85 (1997).
  • 72 Goswami T. Photocatalytic system to destroy bioaerosols in air. J. Adv. Oxid. Technol. 4, 185–188 (1999).
  • 73 Song S. Fabrication of TiO2 impregnated stainless steel fiber photocatalyts and evaluation of photocatalytic activity. J. Korean Ind. Eng. Chem. 19(6), 674–679 (2008).
  • 74 Cho M, Choi Y, Park H, Kim K, Woo GJ, Park J. Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot. 70(1), 97–101 (2007).
  • 75 Armon R. Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Waterborne Pathog. 4(2), 7–14 (2004).
  • 76 Butterfield IM. Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res. 31(3), 675–677 (1997).
  • 77 Guimarães JR, Barretto AS. Photocatalytic inactivation of Clostridium perfringens and coliphages in water. Braz. J. Chem. Eng. 20, 403–411 (2003).
  • 78 Singh A. Photocatalytic disinfection of water using immobilized titanium dioxide. Poll. Res. 24(1), 29–33 (2005).
  • 79 Vidal A, DíAz AI, El Hraiki A et al. Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal. Today 54(2–3), 283–290 (1999).
  • 80 Chen WJ, Tsai PJ, Chen YC. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4(4), 485–491 (2008).
  • 81 Oka Y, Kim WC, Yoshida T et al. Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. J. Biomed. Mater. Res. B Appl. Biomater. 86(2), 530–540 (2008).
  • 82 Chen F, Yang X, Wu Q. Antifungal capability of TiO2 coated film on moist wood. Build. Environ. 44(5), 1088–1093 (2009).
  • 83 Wolfrum EJ, Huang J, Blake DM et al. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36(15), 3412–3419 (2002).
  • 84 Erkan A. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J. Photoch. Photobiol. A Chem. 184(3), 313–321 (2006).
  • 85 Sokmen M, Degerli S, Aslan A. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp. Parasitol. 119(1), 44–48 (2008).
  • 86 Ryu H. Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation. Water. Res. 42(6–7), 1523–1530 (2008).
  • 87 Guillard C, Bui T-H, Felix C, Moules V, Lina B, Lejeune P. Microbiological disinfection of water and air by photocatalysis. C. R. Chim. 11(1–2), 107–113 (2008).
  • 88 Zan L, Fa W, Peng T, Gong ZK. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on hepatitis B virus. J. Photochem. Photobiol. B 86(2), 165–169 (2007).
  • 89 Lin Z. Inactivation efficiency of TiO2 on H1N1 influenza virus. Gaodeng Xuexiao Huaxue Xuebao Chem. J. Chin. Univ. 27(4), 721–725 (2006).
  • 90 Kozlova EA, Safatov AS, Kiselev SA et al. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2. Environ. Sci. Technol. 44(13), 5121–5126 (2010).
  • 91 Watts RJ, Kong S, Orr MP, Miller GC, Henry BE. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res. 29(1), 95–100 (1995).
  • 92 Han W, Zhang B, Cao W et al. The inactivation effect of photocatalytic titanium apatite filter on SARS virus. Sheng wu hua xue yu sheng wu wu li jin zhan 31(11), 982–985 (2003).
  • 93 Sekiguchi Y, Yao Y, Ohko Y et al. Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: basis and study of clinical use. Int. J. Urol. 14(5), 426–430 (2007).
  • 94 Nakamura H, Tanaka M, Shinohara S, Gotoh M, Karube I. Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose. Biosens. Bioelectron. 22(9–10), 1920–1925 (2007).
  • 95 Chawengkijwanich C, Hayata Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 123(3), 288–292 (2008).
  • 96 Suketa N, Sawase T, Kitaura H et al. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin. Implant Dent. Relat. Res. 7(2), 105–111 (2005).• Useful application of titania photocatalysis to make self-sterilizing dental implants.
  • 97 Lilja M, Forsgren J, Welch K, Astrand M, Engqvist H, Stromme M. Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnol. Lett. 34(12), 2299–2305 (2012).
  • 98 Sharma SK, Chiang LY, Hamblin MR. Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine (Lond.) 6(10), 1813–1825 (2011).
  • 99 Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect. Tissue Res. 55(2), 71–79 (2014).
  • 100 Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007).
  • 101 Arias AC, Mackenzie JD, Mcculloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110(1), 3–24 (2010).
  • 102 Kang H, Cho CH, Cho HH et al. Controlling number of indene solubilizing groups in multiadduct fullerenes for tuning optoelectronic properties and open-circuit voltage in organic solar cells. ACS Appl. Mater. Interfaces 4(1), 110–116 (2012).
  • 103 Mizuno K, Zhiyentayev T, Huang L et al. Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J. Nanomed. Nanotechnol. 2(2), 1–9 (2011).
  • 104 Mroz P, Pawlak A, Satti M et al. Functionalized fullerenes mediate photodynamic killing of cancer cells: type I versus type II photochemical mechanism. Free Radic. Biol. Med. 43(5), 711–719 (2007).
  • 105 Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem. Photobiol. Sci. 6(11), 1139–1149 (2007).
  • 106 Tegos GP, Demidova TN, Arcila-Lopez D et al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem. Biol. 12(10), 1127–1135 (2005).
  • 107 Lu Z, Dai T, Huang L et al. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine (Lond.) 5(10), 1525–1533 (2010).•• One of the few papers to use fullerenes to save the life of mice used antimicrobial photodynamic inactivation.
  • 108 Huang L, Wang M, Sharma SK et al. Decacationic [70]fullerene approach for efficient photokilling of infectious bacteria and cancer cells. ECS Trans. 45(20), doi:10.1149/04520.0065ecst (2013).
  • 109 Wang M, Maragani S, Huang L et al. Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation. Eur. J. Med. Chem. 63C, 170–184 (2013).
  • 110 Wang M, Huang L, Sharma SK et al. Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70]fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells. J. Med. Chem. 55(9), 4274–4285 (2012).
  • 111 Manjon F, Santana-Magana M, Garcia-Fresnadillo D, Orellana G. Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection? Photochem. Photobiol. Sci. 13(2), 397–406 (2014).
  • 112 Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol. Sci. 14(2), 69–72 (2009).
  • 113 Iijima S. Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991).
  • 114 Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes – the route toward applications. Science 297(5582), 787–792 (2002).
  • 115 Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424), 91–93 (1999).
  • 116 Hussain CM, Saridara C, Mitra S. Microtrapping characteristics of single and multi-walled carbon nanotubes. J. Chromatogr. A 1185(2), 161–166 (2008).
  • 117 Jolles P, Jolles J. What's new in lysozyme research? Always a model system, today as yesterday. Mol. Cell Biochem. 63(2), 165–189 (1984).
  • 118 Nepal D, Balasubramanian S, Simonian AL, Davis VA. Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett. 8(7), 1896–1901 (2008).
  • 119 Banerjee I, Douaisi MP, Mondal D, Kane RS. Light-activated nanotube-porphyrin conjugates as effective antiviral agents. Nanotechnology 23(10), 105101 (2012).
  • 120 Oza G, Pandey S, Gupta A et al. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7. Mater. Sci. Eng. C Mater. Biol. Appl. 33(7), 4392–4400 (2013).
  • 121 Dinu CZ, Zhu G, Bale SS et al. Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv. Funct. Mater. 20(3), 392–398 (2010).
  • 122 Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205–212 (2011).
  • 123 Sun X, Liu Z, Welsher K et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008).
  • 124 Huang YY, Sharma SK, Dai T et al. Can nanotechnology potentiate photodynamic therapy? Nanotech. Rev. 10(2), 111–146 (2012).• Interesting critical review examinaing the role of nanotechnology in potentiating photodynamic therapy (PDT) both against cancer and against infections.
  • 125 Rong P, Yang K, Srivastan A et al. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 4(3), 229–239 (2014).
  • 126 Zhou L, Zhou L, Wei S et al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B 135, 7–16 (2014).
  • 127 Sahu A, Choi WI, Lee JH, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34(26), 6239–6248 (2013).
  • 128 Ristic BZ, Milenkovic MM, Dakic IR et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15), 4428–4435 (2014).• Study using graphene quantum dots to mediate PDT killing of bacteria.
  • 129 Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-AIDS used for wound disinfection. ACS Nano 8(6), 6202–6210 (2014).
  • 130 Bangham AD. A correlation between surface charge and coagulant action of phospholipids. Nature 192, 1197–1198 (1961).
  • 131 Sadasivam M, Avci P, Gupta GK et al. Self-assembled liposomal nanoparticles in photodynamic therapy. Eur. J. Nanomed. 5(3), 115–129 (2013).
  • 132 Kozlowska D, Foran P, Macmahon P, Shelly MJ, Eustace S, O'Kennedy R. Molecular and magnetic resonance imaging: the value of immunoliposomes. Adv. Drug Deliv. Rev. 61(15), 1402–1411 (2009).
  • 133 Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70(2), 95–111 (1995).
  • 134 Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv. 4(4), 297–305 (2007).
  • 135 Kim HJ, Jones MN. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J. Liposome Res. 14(3–4), 123–139 (2004).
  • 136 Mugabe C, Azghani AO, Omri A. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 55(2), 269–271 (2005).
  • 137 Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents 13(3), 155–168 (2000).
  • 138 Ferro S, Ricchelli F, Mancini G, Tognon G, Jori G. Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitising agents. J. Photochem. Photobiol. B 83(2), 98–104 (2006).
  • 139 Ferro S, Ricchelli F, Monti D, Mancini G, Jori G. Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int. J. Biochem. Cell. Biol. 39(5), 1026–1034 (2007).
  • 140 Bombelli C, Bordi F, Ferro S et al. New cationic liposomes as vehicles of m-tetrahydroxyphenylchlorin in photodynamic therapy of infectious diseases. Mol. Pharm. 5(4), 672–679 (2008).
  • 141 Haldar J, Kondaiah P, Bhattacharya S. Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. J. Med. Chem. 48(11), 3823–3831 (2005).
  • 142 Yang YT, Chien HF, Chang PH et al. Photodynamic inactivation of chlorin e6-loaded CTAB-liposomes against Candida albicans. Lasers Surg. Med. 45(3), 175–185 (2013).
  • 143 Yang K, Gitter B, Ruger R et al. Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy. Photochem. Photobiol. Sci. 10(10), 1593–1601 (2011).
  • 144 Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med. Sci. 17(3), 173–186 (2002).
  • 145 Phillip MJ, Maximuke PP. Chemiluminescence and hematoporphyrin derivative: a novel therapy for mammary adenocarcinomas in mice. Oncology 46(4), 266–272 (1989).
  • 146 Carpenter S, Fehr MJ, Kraus GA, Petrich JW. Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight. Proc. Natl Acad. Sci. USA 91(25), 12273–12277 (1994).
  • 147 Nakonechny F, Firer MA, Nitzan Y, Nisnevitch M. Intracellular antimicrobial photodynamic therapy: a novel technique for efficient eradication of pathogenic bacteria. Photochem. Photobiol. 86(6), 1350–1355 (2010).
  • 148 Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc. Chem. Res. 33(2), 94–101 (2000).
  • 149 Zhang Z, Ortiz O, Goyal R, Kohn J. Biodegradable polymers. Princip. Tissue Eng. (23), 441–490 (2014).
  • 150 Coenye T, Honraet K, Rigole P, Nadal Jimenez P, Nelis HJ. In vitro inhibition of Streptococcus mutans biofilm formation on hydroxyapatite by subinhibitory concentrations of anthraquinones. Antimicrob. Agents Chemother. 51(4), 1541–1544 (2007).
  • 151 Nafee N, Youssef A, El-Gowelli H, Asem H, Kandil S. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int. J. Pharm. 454(1), 249–258 (2013).
  • 152 Pagonis TC, Chen J, Fontana CR et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J. Endod. 36(2), 322–328 (2010).• Points out an interesting clinical application of nanotechnology-enabled antimicrobial PDT in endodontic therapy.
  • 153 Harris F, Chatfield LK, Phoenix DA. Phenothiazinium based photosensitisers – photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr. Drug Targets 6(5), 615–627 (2005).
  • 154 Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol. 71(2–3), 235–244 (2001).
  • 155 Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 34(10), 2019–2023 (1990).
  • 156 Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 52(2), 105–115 (2001).
  • 157 Ueno H, Yamada H, Tanaka I et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20(15), 1407–1414 (1999).
  • 158 Wang XH, Li DP, Wang WJ et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24(19), 3213–3220 (2003).
  • 159 Shimono N, Takatori T, Ueda M, Mori M, Higashi Y, Nakamura Y. Chitosan dispersed system for colon-specific drug delivery. Int. J. Pharm. 245(1–2), 45–54 (2002).
  • 160 Raafat D, Von Bargen K, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74(12), 3764–3773 (2008).
  • 161 Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Poly Sci. 63(1), 125–132 (1997).
  • 162 Shrestha A, Kishen A. Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J. Endod. 40(4), 566–570 (2014).
  • 163 Shrestha A, Kishen A. Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem. Photobiol. 88(3), 577–583 (2012).
  • 164 Chen CP, Chen CT, Tsai T. Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation. Photochem. Photobiol. 88(3), 570–576 (2012).
  • 165 Choi S, Lee H, Chae H. Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori 26695. Photodiagnosis Photodyn. Ther. 11(4), 526–532 (2014).
  • 166 Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010).
  • 167 Araki J, Wada M, Kuga S, Okano T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A Physicochem. Eng. Asp. 142(1), 75–82 (1998).
  • 168 Araki J, Wada M, Kuga S, Okano T. Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J. Wood. Sci. 45(3), 258–261 (1999).
  • 169 Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2), 1048–1054 (2005).
  • 170 Filpponen EI. The synthetic strategies for unique properties in cellulose nanocrystal materials. http://repository.lib.ncsu.edu/ir/bitstream/1840.16/4626/1/etd.pdf.
  • 171 Rånby BG. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc. 11, 158–164 (1951).
  • 172 Filpponen I, Argyropoulos DS. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11(4), 1060–1066 (2010).
  • 173 Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12(10), 3528–3539 (2011).
  • 174 Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA. Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. Photochem. Photobiol. 88(3), 527–536 (2012).
  • 175 Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 60(11), 1289–1306 (2008).
  • 176 Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004).
  • 177 Kuo WS, Chang CN, Chang YT, Yeh CS. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. (Camb.) (32), 4853–4855 (2009).
  • 178 Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB. Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol. 28(4), 207–213 (2010).
  • 179 Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90(2), 619–627 (2006).
  • 180 Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 8(1), 302–306 (2008).
  • 181 Simon-Deckers A, Brun E, Gouget B, Carrière M, Sicard-Roselli C. Impact of gold nanoparticles combined to x-ray irradiation on bacteria. Gold Bull. 41(2), 187–194 (2008).
  • 182 Huang WC, Tsai PJ, Chen YC. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond.) 2(6), 777–787 (2007).
  • 183 Gil-Tomás J, Tubby S, Parkin IP et al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O-tiopronin-gold nanoparticle conjugate. J. Mater. Chem. 17, 3739–3746 (2007).
  • 184 Perni S, Piccirillo C, Pratten J et al. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30(1), 89–93 (2009).
  • 185 Hongwei G, Ho PL, Edmond T, Ling W, Bing X. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3(9), 1261–1263 (2003).
  • 186 Nath S, Kaittanis C, Tinkham A, Perez JM. Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal. Chem. 80(4), 1033–1038 (2008).
  • 187 Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res. Lett. 4(8), 794–801 (2009).
  • 188 Nirmala Grace A, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles – a brief study. Colloids Surf. A Physicochem. Eng. Asp. 297(1), 63–70 (2007).
  • 189 Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789–6798 (2010).
  • 190 Chamundeeswari M, Sobhana SS, Jacob JP et al. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol. Appl. Biochem. 55(1), 29–35 (2010).
  • 191 Khan S, Alam F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomedicine 7, 3245–3257 (2012).
  • 192 Di Gianvincenzo P, Marradi M, Martinez-Avila OM, Bedoya LM, Alcami J, Penades S. Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg. Med. Chem. Lett. 20(9), 2718–2721 (2010).
  • 193 Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 8, 1 (2010).
  • 194 Ravishankar Rai V, Jamuna Bai A. Nanoparticles and their potential application as antimicrobials. In: Science Against Microbial Pathogens: Communicating Current Research And Technological Advances. Méndez-Vilas A (Ed.). Formatex Research Center, Badajoz, Spain, 197–209 (2011).
  • 195 Gupta A, Silver S. Silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16(10), 888 (1998).
  • 196 Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).
  • 197 Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22(22), 9322–9328 (2006).
  • 198 Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM. Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14), 7457–7464 (2008).
  • 199 Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotech 18(22), 225103 (2007).
  • 200 Holt KB, Bard AJ. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39), 13214–13223 (2005).
  • 201 Dibrov P, Dzioba J, Gosink KK, Hase CC. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemother. 46(8), 2668–2670 (2002).
  • 202 Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface Sci. 275(1), 177–182 (2004).
  • 203 Panacek A, Kvitek L, Prucek R et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110(33), 16248–16253 (2006).
  • 204 Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51(5), 956–960 (2005).
  • 205 Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5(2), 244–249 (2005).
  • 206 Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 10(8), 1343–1348 (2008).
  • 207 Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007).
  • 208 Brett DW. A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage. 52(1), 34–41 (2006).
  • 209 Hernandez-Sierra JF, Ruiz F, Pena DC et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4(3), 237–240 (2008).
  • 210 Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared with the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1), 1–16 (2014).
  • 211 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000).
  • 212 Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74(7), 2171–2178 (2008).
  • 213 Aymonier C, Schlotterbeck U, Antonietti L et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. (Camb.) (24), 3018–3019 (2002).
  • 214 Melaiye A, Sun Z, Hindi K et al. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc. 127(7), 2285–2291 (2005).
  • 215 Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26(8), 5901–5908 (2010).
  • 216 Lok CN, Ho CM, Chen R et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006).
  • 217 Otani M, Tabata J, Ueki T, Sano K, Inouye S. Heat-shock-induced proteins from Myxococcus xanthus. J. Bacteriol. 183(21), 6282–6287 (2001).
  • 218 Kitagawa M, Matsumura Y, Tsuchido T. Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol. Lett. 184(2), 165–171 (2000).
  • 219 Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4), 452–456 (2009).
  • 220 Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78(8), 2768–2774 (2012).
  • 221 Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 20(8), 1497–1502 (2009).
  • 222 Lu L, Sun RW, Chen R et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 13(2), 253–262 (2008).
  • 223 Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J. Biomed. Nanotech. 4(2), 149–158 (2008).
  • 224 Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 3(4), 129–133 (2008).
  • 225 Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 18(8), 1482–1484 (2008).
  • 226 Kim KJ, Sung WS, Suh BK et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2), 235–242 (2009).
  • 227 Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4), 382–386 (2009).
  • 228 Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand JO. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2(7), 1083–1095 (2010).
  • 229 Walter WG, Stober A. Probe method for the microbial sampling of hospital carpets. Health Lab. Sci. 5(3), 162–170 (1968).
  • 230 Brevet D, Gary-Bobo M, Raehm L et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. (Camb.) (12), 1475–1477 (2009).
  • 231 Cheng Y, CS A, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 130(32), 10643–10647 (2008).
  • 232 Carpenter AW, Worley BV, Slomberg DL, Schoenfisch MH. Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromolecules 13(10), 3334–3342 (2012).
  • 233 Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44(10), 842–852 (2011).
  • 234 Mccarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (Lond.) 2(2), 153–167 (2007).
  • 235 Choi KH, Lee HJ, Park BJ et al. Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chem. Commun. (Camb.) 48(38), 4591–4593 (2012).
  • 236 Lim ME, Lee YL, Zhang Y, Chu JJ. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33(6), 1912–1920 (2012).
  • 237 Wainwright M. Local treatment of viral disease using photodynamic therapy. Int. J. Antimicrob. Agents 21(6), 510–520 (2003).
  • 238 Haase M, Schafer H. Upconverting nanoparticles. Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
  • 239 Feynman RP. There's plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960).
  • 240 Von Tappeiner H. Uber die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab. Muench. Med. Wochenschr. 47(5), (1900).
  • 241 Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers Surg. Med. 43(7), 755–767 (2011).
  • 242 Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, Mccullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9(1), 1–14 (2013).