We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Mitochondria-targeting particles

    Amaraporn Wongrakpanich

    Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA

    ,
    Sean M Geary

    Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA

    ,
    Mei-ling A Joiner

    Department of Internal Medicine & François M Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA

    ,
    Mark E Anderson

    Department of Internal Medicine & François M Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA

    Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

    &
    Aliasger K Salem

    *Author for correspondence:

    E-mail Address: aliasger-salem@uiowa.edu

    Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA

    Published Online:https://doi.org/10.2217/nnm.14.161

    Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest.

    References

    • 1 Wang B, Galliford CV, Low PS. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine (Lond.) 9(2), 313–330 (2014).
    • 2 Martinho N, Damge C, Reis C. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol. 2(5A), 510–526 (2011).
    • 3 Weissig V, Boddapati SV, Jabr L, D'Souza GG. Mitochondria-specific nanotechnology. Nanomedicine (Lond.) 2(3), 275–285 (2007).
    • 4 Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv. Drug Deliv. Rev. 41(2), 235–250 (2000).
    • 5 Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol. 61(6), 599–610 (2013).
    • 6 Moreira PI, Zhu X, Wang X et al. Mitochondria: atherapeutic target in neurodegeneration. Biochim. Biophys. Acta 1802(1), 212–220 (2010).
    • 7 Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6(5), 389–402 (2005).
    • 8 Walters AM, Porter GA Jr, Brookes PS. Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ. Res. 111(9), 1222–1236 (2012).
    • 9 Joiner ML, Koval OM, Li J et al. CaMKII determines mitochondrial stress responses in heart. Nature 491(7423), 269–273 (2012).
    • 10 Pradelli LA, Beneteau M, Ricci JE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol. Life Sci. 67(10), 1589–1597 (2010).
    • 11 Szeto HH, Schiller PW. Novel therapies targeting inner mitochondrial membrane – from discovery to clinical development. Pharm. Res. 28(11), 2669–2679 (2011).
    • 12 Kinnally KW, Peixoto PM, Ryu S-Y, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim. Biophys. Acta 1813(4), 616–622 (2011).
    • 13 Dumont M, Lin MT, Beal MF. Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer's disease. J. Alzheimers Dis. 20(Suppl. 2), S633–S643 (2010).
    • 14 Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochim. Biophys. Acta 1842(8), 1282–1294 (2013).
    • 15 Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 10(4), 291–315 (2008).
    • 16 Moreira PI, Zhu X, Wang X et al. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta 1802(1), 212–220 (2010).
    • 17 Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7(1), 65–74 (2009).
    • 18 Rohlena J, Dong LF, Ralph SJ, Neuzil J. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid. Redox Signal. 15(12), 2951–2974 (2011).
    • 19 Ferrin G, Linares CI, Muntane J. Mitochondrial drug targets in cell death and cancer. Curr. Pharm. Des. 17(20), 2002–2016 (2011).
    • 20 Wang F, Ogasawara MA, Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med. 31(1), 75–92 (2010).
    • 21 Marullo R, Werner E, Degtyareva N et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8(11), e81162 (2013).
    • 22 Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Des. Devel. Ther. 7, 585–599 (2013).
    • 23 Birk AV, Liu S, Soong Y et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 24(8), 1250–1261 (2013).
    • 24 Chakrabarti AK, Feeney K, Abueg C et al. Rationale and design of the EMBRACE STEMI study: a Phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am. Heart J. 165(4), 509–514.e7 (2013).
    • 25 Smith RA, Merphy MP. Mitochondria-targeted antioxidants as therapies. Discov. Med. 11(57), 106–114 (2011).
    • 26 Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100(9), 5407–5412 (2003).
    • 27 Mao P, Manczak M, Shirendeb UP, Reddy PH. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim. Biophys. Acta 1832(12), 2322–2331 (2013).
    • 28 Miquel E, Cassina A, Martinez-Palma L et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic. Biol. Med. 70, 204–213 (2014).
    • 29 Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann. NY Acad. Sci. 1201, 96–103 (2010).
    • 30 Chamberlain GR, Tulumello DV, Kelley SO. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol. 8(7), 1389–1395 (2013).
    • 31 Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13(1), 238–252 (1965).
    • 32 Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine 7, 49–60 (2012).
    • 33 Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
    • 34 Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm. Res. 15(2), 334–337 (1998).• Early report on a mitochondria-specific particulate drug delivery system.
    • 35 Weissig V, Lizano C, Torchilin VP. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv. 7(1), 1–5 (2000).
    • 36 Weissig V, D'souza GG, Torchilin VP. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control. Release 75(3), 401–408 (2001).
    • 37 D'souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control. Release 92(1–2), 189–197 (2003).
    • 38 Andre N, Carre M, Brasseur G et al. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett. 532(1–2), 256–260 (2002).
    • 39 D'souza GG, Cheng SM, Boddapati SV, Horobin RW, Weissig V. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J. Drug Target. 16(7), 578–585 (2008).
    • 40 Men Y, Wang XX, Li RJ et al. The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals. Int. J. Nanomedicine 6, 3125–3137 (2011).
    • 41 Zhang L, Yao HJ, Yu Y et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials 33(2), 565–582 (2012).•• Demonstrated both in vitro and in vivo cytotoxicity of mitochondrial-targeting liposomes toward breast cancer stem cells and provided a mechanistic explanation.
    • 42 Yu Y, Wang ZH, Zhang L et al. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 33(6), 1808–1820 (2012).
    • 43 Collnot EM, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr CM. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol. Pharm. 7(3), 642–651 (2010).
    • 44 Wang XX, Li YB, Yao HJ et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32(24), 5673–5687 (2011).
    • 45 Li N, Zhang CX, Wang XX et al. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. Biomaterials 34(13), 3366–3380 (2013).
    • 46 Carter LG, D'orazio JA, Pearson KJ. Resveratrol and cancer: a focus on in vivo evidence. Endocr. Relat. Cancer 21(3), R209–R225 (2014).
    • 47 Pan Y, Zhao W, Wang J, Liu Q, Yang G, Li J. [Establishment of a multidrug resistance cell line A549/cDDP of human lung adenocarcinoma and expression analysis of multidrug resistance-associated genes.]. Zhongguo Fei Ai Za Zhi 12(3), 187–192 (2009).
    • 48 Mullen TD, Obeid LM. Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med. Chem. 12(4), 340–363 (2012).
    • 49 Boddapati SV, D'souza GG, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 8(8), 2559–2563 (2008).
    • 50 Solomon MA, Shah AA, D'Souza GG. In vitro assessment of the utility of stearyl triphenyl phosphonium modified liposomes in overcoming the resistance of ovarian carcinoma Ovcar-3 cells to paclitaxel. Mitochondrion 13(5), 464–472 (2013).
    • 51 Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium–PEG–PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release 159(3), 393–402 (2012).
    • 52 Patel NR, Hatziantoniou S, Georgopoulos A et al. Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J. Liposome Res. 20(3), 244–249 (2010).
    • 53 Zhou J, Zhao WY, Ma X et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34(14), 3626–3638 (2013).
    • 54 Wagle MA, Martinville LE, D'Souza GG. The utility of an isolated mitochondrial fraction in the preparation of liposomes for the specific delivery of bioactives to mitochondria in live mammalian cells. Pharm. Res. 28(11), 2790–2796 (2011).
    • 55 Yamada Y, Akita H, Kamiya H et al. MITO-Porter: aliposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta 1778(2), 423–432 (2008).
    • 56 Yasuzaki Y, Yamada Y, Harashima H. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem. Biophys. Res. Commun. 397(2), 181–186 (2010).
    • 57 Kawamura E, Yamada Y, Harashima H. Mitochondrial targeting functional peptides as potential devices for the mitochondrial delivery of a DF-MITO-Porter. Mitochondrion 13(6), 610–614 (2013).
    • 58 Yamada Y, Furukawa R, Yasuzaki Y, Harashima H. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol. Ther. 19(8), 1449–1456 (2011).
    • 59 Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem. 281(6), 3544–3551 (2006).
    • 60 Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 33(5), 1589–1595 (2012).
    • 61 Lu JM, Wang X, Marin-Muller C et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 9(4), 325–341 (2009).
    • 62 Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr. Drug Deliv. 9(4), 367–394 (2012).
    • 63 Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3), 247–289 (2006).
    • 64 Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA 109(40), 16288–16293 (2012).• Well characterized mitochondrial-targeting biodegradable polymeric delivery system.
    • 65 Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Ann. Indian Acad. Neurol. 11(1), 13–19 (2008).
    • 66 Potter PE. Curcumin: a natural substance with potential efficacy in Alzheimer's disease. J. Exp. Pharmacol. 5, 9 (2013).
    • 67 Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol. 7(3), 205–212 (2011).
    • 68 Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol. 21(3), 229–238 (2010).
    • 69 Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50(Suppl.), S382–S387 (2009).
    • 70 Karaflou M, Lambrinoudaki I, Christodoulakos G. Apoptosis in atherosclerosis: a mini-review. Mini Rev. Med. Chem. 8(9), 912–918 (2008).
    • 71 Marrache S, Dhar S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl Acad. Sci. USA 110(23), 9445–9450 (2013).
    • 72 Marrache S, Tundup S, Harn DA, Dhar S. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. ACS Nano 7(8), 7392–7402 (2013).
    • 73 Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 3(2), 34–55 (2011).
    • 74 Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr. Med. Chem. 20(6), 772–781 (2013).
    • 75 Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv. 3(4), 457–478 (2012).
    • 76 Ma X, Wang X, Zhou M, Fei H. A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv. Healthc. Mater. 2(12), 1638–1643 (2013).
    • 77 Law B, Quinti L, Choi Y, Weissleder R, Tung CH. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol. Cancer Ther. 5(8), 1944–1949 (2006).
    • 78 McCully JD, Levitsky S. The mitochondrial K(ATP) channel and cardioprotection. Ann. Thorac. Surg. 75(2), S667–S673 (2003).
    • 79 Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J. 4(1), 20 (2013).
    • 80 Paunesku T, Vogt S, Lai B et al. Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett. 7(3), 596–601 (2007).
    • 81 Wang Y, Zi XY, Su J et al. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int. J. Nanomedicine 7, 2641–2652 (2012).
    • 82 Wang Y, Yang F, Zhang HX et al. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 4, e783 (2013).
    • 83 Ragg R, Natalio F, Tahir MN et al. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014).