We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Tapping the potential of quantum dots for personalized oncology: current status and future perspectives

    Chuang Chen

    Department of Oncology, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071, PR China.

    Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China

    ,
    Jun Peng

    Key Laboratory of Analytical Chemistry for Biology & Medicine (Ministry of Education), College of Chemistry & Molecular Sciences, Research Center for Nanobiology & Nanomedicine (MOE 985 Innovative Platform), & State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China

    Wuhan Jiayuan Quantum Dots Co. Ltd & Wuhan Tumor Nanometer Diagnosis Engineering Research Center, Wuhan 430074, PR China

    ,
    Sheng-Rong Sun

    Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China

    ,
    Chun-Wei Peng

    Department of Oncology, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071, PR China.

    ,
    Yan Li

    * Author for correspondence

    Department of Oncology, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071, PR China.

    &
    Dai-Wen Pang

    Key Laboratory of Analytical Chemistry for Biology & Medicine (Ministry of Education), College of Chemistry & Molecular Sciences, Research Center for Nanobiology & Nanomedicine (MOE 985 Innovative Platform), & State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China

    These authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/nnm.12.9

    Cancer is one of the most serious health threats worldwide. Personalized oncology holds potential for future cancer care in clinical practice, where each patient could be delivered individualized medicine on the basis of key biological features of an individual tumor. One of the most urgent problems is to develop novel approaches that incorporate the increasing molecular information into the understanding of cancer biological behaviors for personalized oncology. Quantum dots are a heterogeneous class of engineered fluorescent nanoparticles with unique optical and chemical properties, which make them promising platforms for biomedical applications. With the unique optical properties, the utilization of quantum dot-based nanotechnology has been expanded into a wide variety of attractive biomedical applications for cancer diagnosis, monitoring, pathogenesis, treatment, molecular pathology and heterogeneity in combination with cancer biomarkers. Here, we focus on the clinical application of quantum dot-based nanotechnology in personalized oncology, covering topics on individualized cancer diagnosis and treatment by in vitro and in vivo molecular imaging technologies, and in-depth understanding of the biological behaviors of tumors from a nanotechnology perspective. In addition, the major challenges in translating quantum dot-based nanotechnology into clinical application and promising future directions in personalized oncology are also discussed.

    References

    • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J. Clin.61,69–90 (2011).
    • Smith RA, Cokkinides V, Brooks D, Saslow D, Shah M, Brawley OW. Cancer screening in the United States, 2011: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J. Clin.61,8–30 (2011).
    • Stewart DJ, Kurzrock R. Cancer: the road to Amiens. J. Clin. Oncol.27,328–333 (2009).
    • Cance WG. Society of surgical oncology presidential address: the war on cancer – shifting from disappointment to new hope. Ann. Surg. Oncol.17,1971–1978 (2010).
    • Marshall E. Cancer research and the $90 billion metaphor. Science331,1540–1541 (2011).
    • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J. Clin.60,277–300 (2010).
    • Sankaranarayanan R, Swaminathan R, Brenner H et al. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol.11,165–173 (2010).
    • Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta1805(1),105–117 (2010).
    • Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers – blood-based strategies to detect and monitor cancer. Nat. Rev. Clin. Oncol.8,142–150 (2011).
    • 10  Weissleder R. Molecular imaging in cancer. Science312,1168–1171 (2006).
    • 11  Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature452,580–589 (2008).
    • 12  van der Meel R, Gallagher WM, Oliveira S, O’Connor AE, Schiffelers RM, Byrne AT. Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov. Today15,102–114 (2010).
    • 13  Glunde K, Pathak AP, Bhujwalla ZM. Molecular-functional imaging of cancer: to image and imagine. Trends Mol. Med.13,287–297 (2007).
    • 14  Harris TJ, McCormick F. The molecular pathology of cancer. Nat. Rev. Clin. Oncol.7,251–265 (2010).
    • 15  Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5,845–856 (2005).
    • 16  Duffy MJ, Crown J. A personalized approach to cancer treatment: how biomarkers can help. Clin. Chem.54,1770–1779 (2008).
    • 17  Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and practical challenges for personalized cancer therapies. Nat. Rev. Clin. Oncol.8,135–141 (2011).
    • 18  Phan JH, Moffitt RA, Stokes TH et al. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol.27,350–358 (2009).
    • 19  Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin.58,97–110 (2008).
    • 20  Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2,751–760 (2007).
    • 21  Torigian DA, Huang SS, Houseni M, Alavi A. Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J. Clin.57,206–224 (2007).
    • 22  Frangioni JV. New technologies for human cancer imaging. J. Clin. Oncol.26,4012–4021 (2008).
    • 23  Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev.38,372–390 (2009).
    • 24  Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today4,399–413 (2009).
    • 25  Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med.16,561–573 (2010).
    • 26  Farrell D, Alper J, Ptak K, Panaro NJ, Grodzinski P, Barker AD. Recent advances from the National Cancer Institute Alliance for nanotechnology in cancer. ACS Nano4,589–594 (2010).
    • 27  Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu. Rev. Med.61,359–373 (2010).
    • 28  Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.9,257–288 (2007).
    • 29  Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer5,161–171 (2005).
    • 30  Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307,538–544 (2005).
    • 31  Chen C, Chen LD, Zhang ZL, Li Y. Advances in the application of quantum dots in tumor markers investigation. Chin. Germ. J. Clin. Oncol.7,1079–1084 (2008).
    • 32  Peng CW, Li Y. Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J. Nanomater.676839,1–11 (2010).
    • 33  Zrazhevskiy P, Gao X. Multifunctional quantum dots for personalized medicine. Nano Today4,414–428 (2009).
    • 34  Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev.39,4326–4354 (2010).
    • 35  Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn.6(2),231–244 (2006).
    • 36  Resch-Genger U, Grabolle, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods5,763–775 (2008).
    • 37  Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland J, Byers R. Quantum dots light up pathology. J. Pathol.216,275–285 (2008).
    • 38  Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev.60,1226–1240 (2008).
    • 39  Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med.50,493–496 (2009).
    • 40  Kosaka N, McCann TE, Mitsunaga M, Choyke PL, Kobayashi H. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine5,765–776 (2010).
    • 41  Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol.14,71–79 (2010).
    • 42  He X, Gao J, Gambhir SS, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol. Med.16,574–583 (2010).
    • 43  Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine7,385–402 (2011).
    • 44  Byers RJ, Hitchman ER. Quantum dots brighten biological imaging. Prog. Histochem. Cytochem.45,201–237 (2011).
    • 45  Wagner MK, Li F, Li J, Li XF, Le XC. Use of quantum dots in the development of assays for cancer biomarkers. Anal. Bioanal. Chem.397,3213–3224 (2010).
    • 46  Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem. Biol.18,10–24 (2011).
    • 47  Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int. J. Nanomedicine3,151–167 (2008).
    • 48  Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine3,83–91 (2008).
    • 49  True LD, Gao X. Quantum dots for molecular pathology: their time has arrived. J. Mol. Diagn.9,7–11 (2007).
    • 50  Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials28,4717–4732 (2007).
    • 51  Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16,63–72 (2005).
    • 52  Algar WR, Krull UJ. Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal. Bioanal. Chem.391,1609–1618 (2008).
    • 53  Xia Z, Rao J. Biosensing and imaging based on bioluminescence resonance energy transfer. Curr. Opin. Biotechnol.20,37–44 (2009).
    • 54  Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science281,2013–2016 (1998).
    • 55  Chan WC, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281,2016–2018 (1998).
    • 56  Mankoff DA. A definition of molecular imaging. J. Nucl. Med.48,18N–21N (2007).
    • 57  Yang L, Mao H, Wang YA et al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small5,235–243 (2009).
    • 58  Yong KT, Ding H, Roy I et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano3,502–510 (2009).
    • 59  Diagaradjane P, Orenstein-Cardona JM, Colon-Casasnovas NE et al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res.14,731–741 (2008).▪ Comprehensive in vivo evaluation of the distribution and metabolism of bioconjugated quantum dot (QD) probes.
    • 60  Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev.39,3031–3056 (2010).
    • 61  Wang C, Gao X, Su X. In vitro and in vivo imaging with quantum dots. Anal. Bioanal. Chem.397,1397–1415 (2010).
    • 62  Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA99,12617–12621 (2002).
    • 63  Gao XH, Cui YY, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22,969–976 (2004).▪▪ The first work using QD bioprobes for in vivo imaging.
    • 64  Gao XH, Chung LW, Nie SM. Quantum dots for in vivo molecular and cellular imaging. Methods Mol. Biol.374,135–146 (2007).
    • 65  Cai W, Shin DW, Chen K et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett.6,669–676 (2006).
    • 66  Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med.48,1862–1870 (2007).
    • 67  Yu X, Chen L, Li K et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J. Biomed. Opt.12,014008 (2007).
    • 68  Yu X, Chen L, Deng Y et al. Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation. J. Fluoresc.17,243–247 (2007).
    • 69  Chen LD, Liu J, Yu XF et al.In vivo targeted imaging of hepatocellular carcinoma in nude mice using quantum dot probes. Chin. J. Pathol.36,394–399 (2007).
    • 70  Chen LD, Liu J, Yu XF et al. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials29,4170–4176 (2008).
    • 71  Kim S, Lim YT, Soltesz EG et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.22,93–97 (2004).
    • 72  Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H. Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res. Treat.103,23–28 (2007).
    • 73  Kobayashi H, Hama Y, Koyama Y et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett.7,1711–1716 (2007).
    • 74  Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H. In vivo real-time, multicolor, quantum dot lymphatic imaging. J. Invest. Dermatol.129,2818–2822 (2009).
    • 75  Pons T, Pic E, Lequeux N et al. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano4,2531–2538 (2010).
    • 76  Erogbogbo F, Yong KT, Roy I et al.In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano5,413–423 (2011).
    • 77  Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science331,1559–1564 (2011).
    • 78  Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med.10,993–998 (2004).
    • 79  Lidke DS, Nagy P, Heintzmann R et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol.22,198–203 (2004).
    • 80  Gonda K, Watanabe TM, Ohuchi N, Higuchi H. In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J. Biol. Chem.285,2750–2757 (2010).▪ The first work using QD imaging of the cell membrane dynamics during cancer metatasis.
    • 81  Misra RD. Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine3,271–274 (2008).
    • 82  Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res.67,1138–1144 (2007).
    • 83  Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee YK. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials31,5436–5444 (2010).
    • 84  Bagalkot V, Zhang L, Levy-Nissenbaum E et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett.7,3065–3070 (2007).
    • 85  Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett.8,2851–2857 (2008).
    • 86  Pan J, Liu Y, Feng SS. Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine5,347–360 (2010).
    • 87  Lu RM, Chang YL, Chen MS, Wu HC. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials32,3265–3274 (2011).
    • 88  Ashley CE, Carnes EC, Phillips GK et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater.10,389–397 (2011).
    • 89  Muhammad F, Guo M, Qi W et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc.133,8778–8781 (2011).
    • 90  Petrocca F, Lieberman J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol.29,747–754 (2011).
    • 91  Agrawal P, Strijkers GJ, Nicolay K. Chitosan-based systems for molecular imaging. Adv. Drug Deliv. Rev.62,42–58 (2010).
    • 92  Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials28,1565–1571 (2007).
    • 93  Chen HH, Ho YP, Jiang X, Mao HQ, Wang TH, Leong KW. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol. Ther.16,324–332 (2008).
    • 94  Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc.130,9006–9012 (2008).
    • 95  Juzenas P, Chen W, Sun YP et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev.60,1600–1614 (2008).
    • 96  Yaghini E, Seifalian AM, MacRobert AJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine4,353–363 (2009).
    • 97  Biju V, Mundayoor S, Omkumar RV, Anas A, Ishikawa M. Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol. Adv.28,199–213 (2010).
    • 98  Triesscheijin M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in oncology. Oncologist11,1034–1044 (2006).
    • 99  Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist14,320–368 (2009).
    • 100  Wu X, Liu H, Liu J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol.21,41–46 (2003).
    • 101  Yezhelyev MV, Al-Hajj A, Morris C et al.In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv. Mater.19,3146–3151 (2007).▪ The first work using QD imaging of multiple biomarkers in breast cancer tissue.
    • 102  Chen C, Peng J, Xia HS et al. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials30,2912–2918 (2009).
    • 103  Chen C, Peng J, Xia HS et al. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology21,95101 (2010).
    • 104  Chen C, Xia HS, Gong YP et al. The quantitative detection of total HER2 load by quantum dots and the identification of a new subtype of breast cancer with different 5-year prognosis. Biomaterials31,8818–8825 (2010).
    • 105  Chen C, Sun SR, Gong YP et al. Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials32,7592–7599 (2011).▪▪ QD imaging of key cancer biomarkers in complex tissue microarray breast cancer specimens with quantitative spectroanalysis to develop a new algorithm of breast cancer classification.
    • 106  Li R, Dai H, Wheeler TM et al. Prognostic value of Akt-1 in human prostate cancer: a computerized quantitative assessment with quantum dot technology. Clin. Cancer Res.15,3568–3573 (2009).
    • 107  Ghazani AA, Lee JA, Klostranec J et al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett.6,2881–2886 (2006).
    • 108  Xing Y, Chaudry Q, Shen C et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc.2,1152–1165 (2007).
    • 109  Sweeney E, Ward TH, Gray N et al. Quantitative multiplexed quantum dot immunohistochemistry. Biochem. Biophys. Res. Commun.374,181–186 (2008).
    • 110  Huang D, Peng X, Su L et al. Comparison and optimization of multiplexed quantum dot-based immunohistofluorescence. Nano Res.3,61–68 (2010).
    • 111  Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M. Identification of CD44v6+/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest.89,857–866 (2009).
    • 112  Liu J, Lau SK, Varma VA, Kairdolf BA, Nie S. Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal. Chem.82,6237–6243 (2010).▪▪ Multicolor imaging to simultaneously identify major cellular components in complex cancer tissue.
    • 113  Frasco MF, Chaniotakis N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal. Bioanal. Chem.396,229–240 (2010).
    • 114  Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. Engl.47,7602–7625 (2008).
    • 115  Sun B, Xie W, Yi G, Chen D, Zhou Y, Cheng J. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immunol. Methods249,85–89 (2001).
    • 116  Agrawal A, Sathe T, Nie S. Single-bead immunoassays using magnetic microparticles and spectral-shifting quantum dots. J. Agric. Food Chem.55,3778–3782 (2007).
    • 117  Zajac A, Song D, Qian W, Zhukov T. Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf. B Biointerfaces58,309–314 (2007).
    • 118  Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta71,1494–1499 (2007).
    • 119  Wang J, Liu G, Wu H, Lin Y. Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small4,82–86 (2008).
    • 120  Cui D, Pan B, Zhang H et al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal. Chem.80,7996–8001 (2008).
    • 121  Gokarna A, Jin LH, Hwang JS et al. Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics8,1809–1818 (2008).
    • 122  Kim YP, Oh YH, Oh E, Ko S, Han MK, Kim HS. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal. Chem.80,4634–4641 (2008).
    • 123  Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal. Chem.80,8649–8655 (2008).
    • 124  Zhang B, Liang X, Hao L et al. Quantum dots/particle-based immunofluorescence assay: synthesis, characterization and application. J. Photochem. Photobiol. B94,45–50 (2009).
    • 125  Soman C, Giorgio T. Sensitive and multiplexed detection of proteomic antigens via quantum dot aggregation. Nanomedicine5,402–409 (2009).
    • 126  Cheng AK, Su H, Wang YA, Yu HZ. Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal. Chem.81,6130–6139 (2009).
    • 127  Boeneman K, Mei BC, Dennis AM et al. Sensing caspase-3 activity with quantum dot-fluorescent protein assemblies. J. Am. Chem. Soc.131,3828–3829 (2009).
    • 128  Jokerst JV, Raamanathan A, Christodoulides N et al. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron.24,3622–3629 (2009).
    • 129  Hu M, Yan J, He Y et al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano4,488–494 (2010).
    • 130  Cheng W, Yan F, Ding L, Ju H, Yin Y. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal. Chem.82,3337–3342 (2010).
    • 131  Gu B, Xu C, Yang C, Liu S, Wang M. ZnO quantum dot labeled immunosensor for carbohydrate antigen 19–19. Biosens. Bioelectron.26,2720–2723 (2011).
    • 132  Nelson NJ. Circulating tumor cells: will they be clinically useful? J. Natl Cancer Inst.102,146–148 (2010).
    • 133  Wang DS, He JB, Rosenzweig N, Rosenzweig Z. Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett.4,409–413 (2004).
    • 134  Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. Engl.46,2448–2452 (2007).
    • 135  Di Corato R, Bigall NC, Ragusa A et al. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano5,1109–1121 (2011).
    • 136  Hsieh YH, Lai LJ, Liu SJ, Liang KS. Rapid and sensitive detection of cancer cells by coupling with quantum dots and immunomagnetic separation at low concentrations. Biosens. Bioelectron.26,4249–4252 (2011).
    • 137  Xie HY, Zuo C, Liu Y et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small1,506–509 (2005).
    • 138  Xie HY, Xie M, Zhang ZL et al. Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjug. Chem.18,1749–1755 (2007).
    • 139  Song EQ, Wang GP, Xie HY et al. Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres. Clin. Chem.53,2177–2185 (2007).
    • 140  Song EQ, Hu J, Wen CY et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano5,761–770 (2011).
    • 141  Stroh M, Zimmer JP, Duda DG et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med.11,678–682 (2005).
    • 142  Estrada CR, Salanga M, Bielenberg DR et al. Behavioral profiling of human transitional cell carcinoma ex vivo. Cancer Res.66,3078–3086 (2006).
    • 143  Chung GG, Zerkowski MP, Ghosh S, Camp RL, Rimm DL. Quantitative analysis of estrogen receptor heterogeneity in breast cancer. Lab Invest.87,662–669 (2007).
    • 144  Liu J, Lau SK, Varma VA et al. Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano4,2755–2765 (2010).
    • 145  Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat. Rev. Cancer9,239–252 (2009).
    • 146  Peng CW, Liu XL, Liu X, Li Y. Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance. J. Transl. Med.8,101 (2010).
    • 147  Peng CW, Liu XL, Chen C et al. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials32,2907–2917 (2011).▪▪ Simultaneous in situ imaging of cellular and molecular ingredients of the cancer microenvironment to reveal patterns of cancer invasion.
    • 148  Liu XL, Peng CW, Chen C et al. Quantum dots-based double-color imaging of HER2 positive breast cancer invasion. Biochem. Biophys. Res. Commun.409,577–582 (2011).
    • 149  Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science298,1759–1762 (2002).
    • 150  Jaiswal J K, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21,47–51 (2003).
    • 151  Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect.114,165–172 (2006).
    • 152  Choi AO, Brown SE, Szyf M, Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J. Mol. Med.86,291–302 (2008).
    • 153  Fitzpatrick JA, Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett.9,2736–2741 (2009).
    • 154  Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci.110,138–155 (2009).
    • 155  Yong KT, Roy I, Ding H, Bergey EJ, Prasad PN. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small5,1997–2004 (2009).
    • 156  Chu M, Wu Q, Yang H et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small6,670–678 (2010).
    • 157  Pelley JL, Daar AS, Saner MA. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol. Sci.112,276–296 (2009).
    • 158  Su Y, Peng F, Jiang Z et al.In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials32,5855–5862 (2011).
    • 159  Yang RS, Chang LW, Wu JP et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect.115,1339–1343 (2007).
    • 160  Choi HS, Liu W, Misra P et al. Renal clearance of quantum dots. Nat. Biotechnol.25,1165–1170 (2007).
    • 161  Choi HS, Liu W, Liu F et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol.5,42–47 (2010).
    • 162  Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett.9,2354–2359 (2009).
    • 163  Su Y, Hu M, Fan C et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials31,4829–4834 (2010).
    • 164  Barua S, Rege K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small5,370–376 (2009).
    • 165  Williams Y, Sukhanova A, Nowostawska M et al. Probing cell-type-specific intracellular nanoscale barriers using size-tuned quantum dots. Small5,2581–2588 (2009).
    • 166  Geys J, Nemmar A, Verbeken E et al. Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ. Health Perspect.116,1607–1613 (2008).
    • 167  Clift MJ, Brandenberger C, Rothen-Rutishauser B, Brown DM, Stone V. The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology286,58–68 (2011).
    • 168  Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC. In vivo quantum-dot toxicity assessment. Small6,138–144 (2010).
    • 169  Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. Engl.46,2448–2452 (2007).
    • 170  Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano2,873–878 (2008).
    • 171  Hu X, Gao X. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano4,6080–6086 (2010).
    • 172  Erogbogbo F, Tien CA, Chang CW et al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug. Chem.22,1081–1088 (2011).
    • 173  Bottrill M, Green M. Some aspects of quantum dot toxicity. Chem. Commun.47,7039–7050 (2011).
    • 174  Xu H, Chen C, Peng J et al. Evaluation of bioconjugate efficiency of different quantum dots probes immunostaining tumor marker protein. Appl. Spectrosc.64,847–852 (2010).
    • 175  Yang XQ, Chen C, Peng CW et al. Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal factor receptor in breast cancer tissue arrays. Int. J. Nanomed.6,2265–2273 (2011).